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THE USE OF A PIECEWISE CONSTANT PROPORTIONAL HAZARDS
MODEL IN ISSUES RELATED TO STANDARDISATION -
A REYIEW AND SOME RESULTS

Dr M Rafig Shot ™

1. INTRODUCT 10N

Standardisation is an important tool of comparison in demographic
analysis. It is applicable in connection with both longitudinal and
cross-sectional types of data; and in dealing with subjects like
mortality, fertility, labour force analysis, evaluation of family planning
programmes, to quote a few examples.

Due to problems associated with conventional standardisation in the
comparison of more than two groups in question (Clogg, 1978 : 527),
mathematical models could be used as an alternative for the purpose of
finding adjusted or standardised rates. Clogg (1978} proposed a
saturated multiplicative model which like Teachman (1977) and others
could be regarded as solving the problems related to 8 summary measure
used in direct standardisation (Clogg, 1978 : 523).

Many others have used multiplicative models for the purpose of indirect
standardisation. For instance, in the analysis of vital rates in connection
with rare events, or in situations where the age-specific data were not
available, multiplicative models were suggested by Stouffer (1951),
Kilpatrick (1962}, Mantel and Stark (1968}, Osborn {1975), Breslow and
Day (1973), Gail {1978) and others.

Hoem {1979) has used a special kind of Cox’ {1972) model, which will be
called the piecevise constant proportional hazards model. At first sight,
the model seems to be applicable in both direct and indirect
standardisation (Hoem, 1979 : 12).

¥ This matter was prepared while M. Rafiq Shah was working on a doctoral dissertation in the
Interuniversity Programme in Demography at the ¥rije Universiteit, Brussels, Belgium.



Seemingly interesting and perspicuous application of statistical theory
to demographic events and rates, a thorough examination of Hoer's work
iz the subject matter of this note. Some objectives that could be achieved
after such an examination are as follows.

a. 'We will be able to demonstrate that the analysis made according to the
constant proportional hazards model used by Hoem (1979) i5 in fact
identical to the use of a multiplicative model, where the numbers of
events are assumed to have a Poisson error structure.

b. after having shown the equivalence of results (Relative risks) obtained
by using the classical multiplicative model, and the one used by Hoem
{1979), it will be possible to reinterpret the parameters of the
multiplicative model in terms of conventional standardised rates.

-

. & critical appreciation of the model will be made to understand if the
model used by Hoem could really be used for the purpose of both direct
and indirect standardisation.

Since the model proposed by Hoem (1979) is & special case of the
proportional hazards model, we shall begin with the piecewise constant
proportional hazards model. The present discussion as a whole could be
divided into four parts as follows.

First, the definition of a piecewise constant proportional hazards mode}
#i11 be followed by the derivation of a piecewise 1og-likelihood function
(log L). Then it will be shown that (log L} is equivalent to the one
obtained from observations having a Poisson error structure in a
contingency table perspective. Later on, a log-linear model 'will be fitted
on the data used by Hoem (1979) by using GLIM (Generalized Linear
Interactive Modelling; Release 3, Baker and Melder, 1978} for the purpose
of Vlustration and new interpretation of the parameters of a classical
multiplicative model. Finally, the use of the proposed model will be
commented in the 1ight of various issues of standardisation; in particular
to examine the claim that the proposed model solves the issues of both
direct and indirect standardisation.



2. THE PIECEWISE CONSTANT PROPORT IONAL HAZARDS MODEL

2.1. Definition

The proportional hazards model is based on the pioneering work of Cox
(1972). The model has been developed further by Breslow (1972, 1974,
Holford (1976), Gross and Clark (19753, Kalbfleisch and Prentice {1980)
among others.

The application of piecewise constant proportional hazards models in the
design and analysis of clinical trials can be found in Peto &/ &/
(1976,1977). Laird and Olivier {1980} have demonstrated that piecewise
constant proportional hazards models which are used basically for
survival data analysis are identical to the models used in the analysis of
contingency tables. Menken &/ &/ {1981} have used the model for the
analysis of socio-economic influence on marriage dissolutions in the USA.
More recently, Trussel &7 &/ (1983) have used the model for the analysis
of covariates related to infant and child mortality in Sri Lanka.

To begin with, 1et us denote by U(t,i, Zi) the hazard rate at duration i, for
an individual 1 with a known set of covariates Z. According to the
proportional hazards model, the hazard rate U{;,, Z,J can be written as the
product of two functions, one depending merely on time t, anather
depending merely on covariates Z, .

Uit 2) = UL exp(B2,) W

U(L) is called the base-line hazard at duration t; ' is a vector of
parameters to be estimated.

Unlike the constant hazard model, where U(L) is assumed to remain

constant over the whole time range, the piecewise constant hazard model
assumes that the hazard rate is constant in time intervals {y-v'}

{j=1,2,.... JL 1t is thus assumed that there exists a set of constants 8
{j=1...J} such that

1) (2}

N



The constants aj are unknown parameters and should thus be estimated.

Substitution of (2} in {1} gives

uit, 2 = exp(aj). exp(f'Z,) if L= [11_', - (3)

Using the notations of conventional life table analysis, the probability
that an individual with covariates Z, survives upto time {; is:

S, Z) = expl-f, Uls, 2,)ds)
= expl-alL). exp(F'Z)] {4)

where (L) = [ U(s)ds is the cumulative base-line hazard. Note that the
probability that an individusl dies in a small interval [t 1.+ds)
approximately equals

5(L, ZJU(L, 2).ds. (5)

i L M M

2.2. The (1ng-)likelihood function

One of the procedures for estimating the parameters of a4 specified model
is the method of maximum likelihood. According to this method, the
partial derivatives of the log-likelihood function are set equal to zero
and the so obtained system of equations 15 solved. We derive here the
log-tikelihood function for the piecewise proportional hazards model.

Let us assume that we have n individuals under observation. Let §, be an
indicator variable, with 6.=1 if the i-th individual dies {or fails) at time
1, and £=0 11 the i-th individual iz censored at time &, .. The contribution
to the likelihood of the individuals who die is

L, ZIUL, 29,

o i

angd the cantribution of the censored individuals iz



and the likelifwod function is thus (proporticnal Lo}

L=, 5L, 20, 25 (6)

=4 =

Taking the natural logarithms of both sides of (6) and substituting the
relative expressions defined in (3) and (4) yields the log-1ikelihood

tog L = Z, 8,.logU(t) + 2, 8.(FZ

1

) - Z,AlL). enp(p'Z) (7)

1

Heavy algebraic manipulations reduces (7) to the most commonly used
form -

logl =2

767 3 [a D (2) +fz D (2) - 93’9(3 +f'z}. (E‘Epg"'" 3 (8)

whara
Z = the set of different covariate vectors recorded;

Dj‘:Z:': the number of individuals with covariates z who die

{fail) in the interval [t 10 4 t.);

Rjtiz) = the set of individuals with covariates z who are still at
risk at time tj_‘, Note that R denotes a set and R stands
for & figure. Formally Ry(z) = {i=eR,|Z;=2} (where R, is the

set of individuals at risk at the beginning of the jih
interval, i at time t._,);

F;'ij = the exposure timg of the ith individual in the jth interval.

The computation of Ei:i for discrete dete requires some assumptions
ragarding the occurence of the events in the specified interval. For an
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interval of unit length we will assume, following Menken 27 &/ (1981
183) :

Eij:i ift.>t.
=1/2 1ft et 1J,tj)
=0 ”L;“,-

For further simplifications the following notation can be useful

g {2} = “1532!2:; Eu

in the following section, it is shown that the log-iikelihood function in

{5} is equivelent to the one obtained by assuming & Poisson distribution
for the observations in a contingency table

2.3. The eguivalence with log-linear models

Let Djt'z), {J=1,.. J; 2€2) be a discrete dependent variable having a Poisson

distribution with mean Mj(z), and censider the follawing log-linear model
for M(2) -

Mj(z) = Rj(z} . exp(aj«rfi'z). (9)
The log-likelihood function for this model {s

logL = 2, ., Z,[D(2).10g{M(2)} - M(2) - 10g{D (2))].

Substitution of the expression for Hj(z) as specified in (9) finally yields
the log-likelihood function

logl =3, 3 D (2). (aJ+{3 2) - R; (23 exp{a +i'z)

+ D;(2).10giR,(2)) - log(D,(2)]. {10)
The log-likelihoods in (8) and (10) differ only by the term

%,e,5i05(2) 10g(R(2))-10g(D,{z)). This term, however, is independent of the



parameters 3 and § ond may therefore be dropped. Due to this

equivelence, we may use GLIM {or any other statistical package for
log-lingar models analysis) in arder to estimate the unknown parameters
of the piecewise constant proportional hazards model. Before such an
altempt, however, we describe the use of the proportional hazards model
in standardigation.
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. PROPORTIOMAL HAZARDS MODELS AND STANDARDISATION

Z.1. General remarks

Terme employed in connection with the proportional hazards models used
in survival analysis are analogous to the terms used in conventional life
tables. The difference is that, in the former, the population concerned is
no longer considered as a homogeneous group--the risk of death/failure
depends on the Characteristics of the subgroups constituting the whole
population. A case in point is the risk of death classified by age and the
regional place on the marital status of a person as is corrmonly used in
multistate demographic analysis. Instead of “"death”, the general term
“failure” 15 usually used in view of its extention to other areas such as
fertility and migration.

Since proportional hazards models are currently employed for estimating
the effects of various covariates where each constitutes a subgroup, it
could be used also for the purpose of comparing these groups through
what are called standardised rates in conventional sense. Being 4
statistical tool of demographic comparison, standardisation is thus
logically connected with the proportional hazards model for the purpose
of comparing the subgroups in a given setting.

2.2. Use of the model in standardisation

For the sake of simplicity let us limit our discussion to mortality
analysis and borrow the notation {with some alterations) used by Hoem
{1979). The piecewise constant proportional hazards model that could be
used for the comparison of mortality in subgroups k of a population iz :

U (%) = 8, Ux) (1)

where U (») is the death rate at age » {in completed years) for the k-th
group. (U, (x) and U{x) are usually called the forces of mortality.) 6, is the

group-specific rate independent of %, and U(x) iz the age-specific rate of
all the groups combined.



Let

D,{#) = the number of deaths at age x in the k-th group,

E{k{x} = persons exposed to the risk of death at age ¥ in the kth
group (k =1,2,...K, %= 1,2, ...%)},

D, = Z,D,(x), D) =2, D(x) and D=Z Z D(x}
simitariy,

Ro=Z R i), Rxi=Z R(x) and R=Z 2 R (%),
Comparing {11} with (3}, we note that

B, = explfZ) and U(x) = exn(aj),

where Z are the covariates for the k-th subgroup and % is in the j-th
time~-interval.

The 1og-likelihood function of the model (3} is obtained by resetting the
cubscripts in {8) or {10} {and omitting the constant term). Accordingly,

legL = Z, 2 (D, (x).10g{U(x)) + D, (x).10g(8,) - U(x).R ()8, ]
(12}

The maximum likelihood estimators ﬁk and ﬁ(x), abtained by
differenciating log L satisfy the following equetions :

§ = -=--mmmmmm- (13)
A
Z, U(z).R, (x)



and

A D(x)
(%) = === mrmme : {14)
Z, Bk R (%)

Estimates of 8, and U(x} satisfying (13) and (14} could be obtained by
iteration. For instance, starting with 8, = 1 in the first cycle of the
iteration, the estimates of the parameters are :

A D(x) Dix)

Z, R(2)  R(x)
and

Dy

akt\ﬂ .............

LI(R)U) R, (x\

This process is continued untill stable values of the estimates are
obtained.

Let us assume that the fstimatcfr\'s have settled down to their maximum
likelihood estimates of 6, and U(x¥™ (the superscipt n shows the n-th

cycle of iteration). Accordingly, these estimates satisfy the equations
Dy

B e (15}
3, Ux)® R, ()

10



and

N D{x)
B0 = —emmeeemoeeee . (e
gk gkﬁn)‘ Rk{:x}

The wvalues obtained in each step of the iteration are sometimes
normalized for the purpose of improving convergence of the procedure
tMental and Stark, 1968; Ireland and Kulback, 1968). The estimates Ae:ef the
parameters obtained in the n-th cycle of the iteration, @k‘i"‘f’ and U(x)™,

are normalized by the following rescaling factors, C and D, according to
Hoemn {1979)

A .
C=Z, UV R(x),
and

D=3, UG R(x).

{C and D are the expected and observed number of deaths in the pooled
groups respectively). The normalized maximum likelihood estimates of
the parameters are :

Bk* = ak{“j,(CfD} (17)
angd
UG = D™ (0/C). (18)

A A .
We may examine now the use of the estimates 8, and U(x) ™, and the
normalized estimates Elk* and U{x)*, which are all indices used in
conventional standardisation.

11



3.3 Model estimates and conventional indices

Simdlar (o other iterative procedures used by Mantel and Stark {1968} ,
Biraslow and Day (1975) among others, the stable values of the
astimators, B ) {sge 15), could be used as an index relating to indirect

. Ay s .
stendardisation. For instance, the numerator of ak“‘? is the number of

obeerved deaths in k-th group, and the denominator is the number of
expected deaths in the same  group accardmg to the estimated schedule of
age-specific death rates U™ Thus Sk('ﬁ is the estimate of the

Standardised Mortality Ratio (SMR).

The normalized estimate of the parameter, Bk* {17) could be related to an

index used in connection with direct standardisation. Substitution of the
values of Cand D in (17) yields:

3, e wix)

Z, Ux) wix)

where wix) = R{x)/R

A A A
Recalling that U (x) = 8,®. U™, we get

A
3, U (xdhwix)
Bk* . e ————— . ’: 3 9)
Z,, Ux) wix)

Eik* is thus the ratio of the estimated number of deaths in the k-th group
to the total number of observed deaths in all the groups combined. Note
that the age-specific rates of the k-th group, ﬂx(x), are estimated
according to the model, and the age-composition of the combined groups
is used as a standard. The estimate Bk* is thus a "special type" of
Comparative Mortality Factor/Figure {CMF); since CMF is defined as the

ratio of expected deaths {obtained from the observed age-specific death
rates of the k-th group and the population composition of all the groups



combined), to the crude rate of the combined groups (Spiegeiman, 1960 .
219).

An interesting application of {19) is the measurement of mortality
differences of the groups under comarison by the ratic of the "special
type” of CHMFs which will be called “model” CMF's and denoted by ™CHF.
For the comparison of two groups (suffikes 1 and 2) for instance, and
with the notation already introduced, this ratio is :

e = A *
CHF,  Z, Ui(x).w(x) 8,

- ———————— T ————"_— - o — - —

A
PCHF, I, Uy(x)w(x) 82*

13



4. |LLUSTRATION

For illustrative purposes, let us consider the data used by Hoern {1979},
as shown in Table 1. In this example the risk factor is associated with
marital status thaving two categories: bachelors and married German
rmaless, and the demographic phenomena under study is mortality.

Az shoyrn in Table 2, both crude and age-specific rates indicate that
moriality varies by marital status and age. The crude rates of bachelors
and rarried men are .00517 and .00300 respectively; giving a crude
reiative risk of death of 1.72, indicating that men who remain bachelors
have 727% higher mortality than married men.

Although the trend of age-specific rates of bachelors and married men is
gimilar in Table 2 (the death rates by age descreases), the patiern of the
age distribution of their respective populations differ from one to
another, i.e. the proportion of married men increases, while that of
bachelors decreases by age. Since their crude rates hide the diszimilar
pattern of the age structures, a standardised summary measure is
required for the purpose of meaningful comparison of mortality between
bacheiors and married men. Note that such a situation calls for the use of
direct standardisation according to conventional analysis.

In the following section we show how the estimates of the parameters of
the proposed model (11) could be used as standardised indices for such
comparisons.

4.1. Estimation of the parameters

The parameters of the model (11) were estimated by iteration {equations
(153 and (16)). It may be noted that being maximum likelihood estimates,
they satisfy {132} and {14) too. Of these estimales, @,}“’ and its normalized

form Eu*: which could be interpreted as summary measures of

group-specific rates, will be the core of our discussion in the following
seclions.

For bachelors A{k:ﬁ and married men {k=2), the values obiained by
iteration are - 8, = 1.2134 and 8, = 6385 respectively. This gives a

relative risk of 1.842 = 8,00/ 8.,

14



Table 1. Constructed number of deeths snd person years of german males
by age and marital status,

ABGE DEATHS PERSON YEARS
SINGLE MARRIED TOTAL SINGLE  MARRIED TOTAL
% Dy Dz} D(x) R,(x) Rp{x) R(x}

22 433 24 457 81,444 8,556 100,000
23 412 36 448 86,835 12,708 99,543
24 337 66 439 75,892 23,203 99,095
25 331 102 433 63,241 35,415 98,656
26 287 138 425 92,023 46,207 98,223
27 242 171 413 42,127 55675 97,798
25 215 185 400 36,915 60,470 97,385
29 192 200 392 32,215~ 64,770 96,985

- s A A A e AN W L M A S mm M MW R AN MR MR T @R W R e MW MW AR s e M W RN Ww e s e e

TOTAL 2,485 g22 3,407 450,666 307,004 787,685
o) oy (O (R,) (R,) (R)

Source . Hoem {1978 : 29); Table 2 and Table 4 with subscripts of the
notation by marital status reversed.



Table 2. Proportions, crude and age-specific death rates of males by_
marital status.

AGE DEATH RATES PROPORTIONS
SIMGLE MARRIED  TOTAL SINGLE®* MARRIED®

N A 4 B T A ¢ BN 105

22 004735 002805 00457 190 028
23 004745 002833 00450 181 041
24 004915 002844  .00443 158 076
25 005234 002880  .00439 132 415
26 005517 062987 .00433 108 451
27 005745 003071 00422 0886 61
21 005824 003059  .00411 077 197
29 003860 003088 00404 067 211

Crude

Rates 005170 003000  .00433 1.001 1.000

Crude Relative Risk = 005177003 = 1.72

Source : Table 1:a=01444/480688,.. ; b=8556/307004,...



After normalization (see {17) and (18)), the estimates are : 8~ = 1.228
and 8," = 666, giving a relative risk of 1.844 =8, %78,

, A
It may be noted that the relative risks obtained from E!k(“) and the

normalized estimate Bk* should be identical, since the normalization

factor ig eliminated in the process of comparison. Their difference,
accounted for here, may be attributed to rounding errors.

Besides the method of iteration that enables one to find the estimates of
the parameters of the model, we may uge GLIM for estimating the
parameters of a specified model involving particularly large data sets.
Other reasons for using GLIM in the data of our illustration are described
in the following section,

42 The yse of GLIM

The establishment of theoretical links between the log-likelihood
function of the hazards model and the log-likelihood function for
multiplicative models of contingency tables (equations (6) and {10))
encourages us to treate the data of Table 1 as a contingency table and
estimate the parameters by using GLIM.

GLIM was used also due to the availability of two types of normalization
procedures commonly known as the constraints imposed on the
parameters of the proposed model. We call these constraints "GLIM" and
"Usual” constraints. The purpose of using these constraints ig 1o
reinterpret.  the parameters of the multiplicative models under
canstruction in the present discussion in terms of indices commonly used
in standardisation.

According to the "GLIM" constraints, the parameters of the first row and

first column of an Ix.J table having two factors A and B, say, are unity as
follows (Plackett, 1974):

vwhere the w's denote the parameters of a multiplicative model: wi"* and
wje are the main effects of factors & and B, and wij"’s stands for the

17



interaction effects of A and B.

Their counter parts in the tog-linear mode! are :

& - B o = =
U = UB = U % = Uy % =0,

whara
A_ A B_ a. - AB,
U =loglw®), US=loglwF) and A8 = log(w,A8).

Recent discussion regarding relationships and use of multiplicative and
log-linear models could be found in the work of Frans Willekens (1981,
1982).

According to this model specification and the constraints mentioned
above, the subgroup having the parameter which has been assigned the
value of unity {ie, wizi,...) is considered as the reference or standard

qroup, and other parameters measure the relative risk.

The computer listing of our illustration according to the “GLIM”
constraints (Appendix) shows estimates of the parameters of a log-linear
model. Since we have two groups under comparison, the value of only one

estimate, UZB, is shown (the value of the other estimate is zero according
to the "GLIM" constraints). Mote that in the computer listing Uzs is

denoted as K2.

The value of K2 is -6111, giving w, = .5428. Since w, =1 {(accarding to

“BLIM" constraints), the standardised relative risk (SRI} is equal to 1.842
= 1/.5428. Comparing SRI with the crude relative risk of 1.72 (Table 2),
we see that, after model corrections for age differences, men who remain
bachelors have abaut 78 {i.e., 1.842-1.720) higher risk of death.

A A
Since the relative risk w, /w, is found to be the same ss 8,™/ 8,™, there
is reason o interpret wj and w, as the SMRs of group 1 and group 2
respectively. Note that B () is obtained through iteration and equals the

SMR of the kth group. This argument may not, however, saund currect
since the value of w, or w, is not exactly equal to a<n‘ or a.,.in‘

18



respectively. This might be due to the reason, that the value of w, has

heen arbitrarily set equal to 1 (according to "GLIM™ constraints). We
theretore now consider the "Usual” constraints, which are slightly less
restrictive.

Bishop &7 &/ (1975}, Goodman (1970, 1971a, and 19710}, Payne (1977}
and Everitt (19773 among others use the following constraints which are
commonly known as “Usual” constraints :

b o_ B _ B . 48 _
was -ijj -Hiwﬁ _Hiwﬁ =1

for multiplicative models and

o A& B . v &B . 4B

for 1og-linear models. The relationship between the w's and the U's is the
same as that stated according to "GLIM" constraints.

in the computer listing working with "Usual” constraints (Appendix), the
value of L&B (le, K2) is -3055, and therefore according to the

constraints, U,B {i.e, K1} is equal to .3056; giving w, and w, equal to
1.357 and 737 respectively. The standardised relative risk w, fw, is

equal to 1.842 = 13577737, which is similar to the one obtained
according to "GLIM" constraints.

The values of w, and w, according to “Usual” constraints are somewhat

similar to the observed SMR's {(based on the age-specific mortality rates
of both qroups combined as a standard, i.e., 1.178 for group 1 and .708 for
group 2). We call these estimates somewhat similar to SMR's of the
groups concerned, because unlike the "GLIM" constarints w, 18 nat

arbitrarily equal to unity.

Therefore when required, the parameters related to an additive log-linear
model, i.e., w, and w,, under the "Usual” constraints in particular, could

be interpreted as estimates of the 5MR’s of the groups under comparison.

19



S. S0ME CONCLUSIONS

The examination of the piecewise constant proportional hazards model

and

its equivalent log-linear model, together with the numerical

excercise {the present exercise consists of comparing mortality of two
groups) suggest the following results and conclusions.

1. Mortality differences between subgroups are measured by standardised
ratiocs. The estimators that are apt for the purpose of such standardised
COMparisons are :

a.

AL
kar”’ - we may call it model SMR, and denote it by "SME. It is based

gn the estimated age-specific rates of all the groups combined,
U)X - yeed as a standard. For two groups (k = 1,2}, their ratio
measiures the realtive risk. We may call it the Standardised Relative
Rizk, and denote it by SRR!. Using 8¢ and the relsted notation, SRR’

is:
SRR' = MSMR,/MSIR,.

8; - 4 special type of CMF for the k-th  group - ™CMF. We call it

mode] CMF since the age-specific rates of esch group are estimated
through the model, and the proportions of both groups combined is
used as a set of standards weights. hence, in this estimator two
standards are employed, f.e. U(x) and R(x). We shall come to this

point later on. For two groups under comparison, the ratio of their
estimated CMF is the SRR, that is:

SRR? = MCMF, /MCMF,,

. By using GLIM we have introduced the k-th column effect parameter,

W, We have indicated that W is somewhat closer 10 the observed

SMR of the k-th group under the "Ususl” constraints. For the two
groups under comparison in our illustration the ratic of the
estimates gives SRR, 18,

SRRZ = W, /Wy,

20



An important conclusion is that, by whatever name we call the
estimators mentioned above, the standardised relative risk {SRR) of these
estimators is identical, i.e., measuring identical differences of mortality
petween the groups under comparison. As we have seen in our i1lustration
the relative risk obtained by using a, b, or ¢ iz 1.84, showing that the
mortality of group 1 is 84% higher than group 2. ‘We may therefore not
conclude that the maodel could be used for both direct and indirect
standardization.

2. The mode! provides bagically an alternative 1o indirect standardisation
which {8 recommended when the age-specific data relating to the
phenomena under study, are either totally or partially not available. in
this respect, the model provides the best alternatwe to im:hrect
stendardisation. Note thet for estimating the estimators 8,%? and O

by iteration, we require the data on the total number of deaths in the k-th
group, D,, the population composition of the k-th group sz{x}, and the

deaths by age of all the groups combined, D(x), showing that the

age-specific death data are not required for the groups under comparison.
A

An interesting property of the estimator 8% is that SRR' could be used

to show the relationship between crude rates and expected rates of the
groups under comparison. For instance, ac already defined SRR' is

A A P
8, b, I UYVR()

A . . A
Z, U PR (%) I UGOR,(x) 8™
) A AL
I, U (PR I U (R (x) 8,

‘w‘here b, (a() is the observed age-specific death rate of the k-th group and
U (%) = 800000 ®.

Equation (20} holds if
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‘ A
I U PR (Y 2, UGRIR,(R)
“““““““““ N “‘"'X""‘"‘"" = ]
I URPRY 3 U, (MR (%)

One of the conditions for this equality to be true is that the number of
observed de?\ths ingroup k, &, U (x)°.R (), equals the numbar of expacted
deaths, I Lg((x}.Rk(x}» This is an important property of the estimates
obtained in contingency table analysis and bi-proportional adjustment
procedures. Comparisan of the results in Table 2 and Table 3 shows that

this is indeed the case. Note that in these tables, instead of total number
of deaths, the crude and expected death rates ara shown to be equal.

For the purpose of comparison, therefore, the estimated age-specific
death rates U (x) have to be weighted by a different set of weights (other

than R,(x) and R,(x)). One set of such weights is the population

composition of both groups combined, i.e. R(x) or w(x) = R(x}/R. I the
weights w(x) are used along with the estimated age-specific rates L[ (x),

we could easily find SRRZ,

It follows that, when we speak of normalized estimators 8% or the
related index SRRZ, we use in fact two standards, namely Y (x) estimated

from the model {11) that is commonly used for indirect standardisation,
and afterwards apply the poputation composition of both groups combined
{wix)) as a standard - a procedure that is normally used in direct
standardisation.

Therefore, we may not say that the proposed model (11} is applicable to
both direct and indirect standardisation. We should rather say that the
method proposed uses both types of conventicnal standardisation
procedures when required.

3. 1t ig interesting to note that if we had not used the estimated values
(Qk{x)) - obtained after using the model {(11), but instead the obsgerved

sge-specific death rates of the groups under comparison { UXx)) together

with the population composition of the combined groups (w(x)), the
conventional standardised risk denotes by SRR for the two groups in
question would have been
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Table 3. Estimated age-specific rates and proportions of persons exposed
to the risk of death by marital status.

AGE ESTIMATED RATES ? PROPORTIONS b‘
SINGLE MARRIED SINGLE MARRIED
A ‘o A P
# U, () U, (x) ALY {4
22 20476 00258 190 028
23 00476 00259 181 041
24 00496 00269 158 076
25 00525 00285 132 15
26 00551 00299 108 151
27 N0571 00310 066 181
26 00573 00311 077 197
29 00562 N0316 067 AR
1.001 1.000

A

3, w,(x) . U (%) = 00517497 = 00517
A

I, wol) . Uy{x) = .00300264 = 00300

a: From computer listings as shown in the Appendix
b:FromTable 1w, (x) =R, (x)/ R, and w,(x)=R(x}/R,
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Table 4. Observed age-specific death rates by marital status, and
proportions of persons exposed in both groups combined

AGE OBSERYED RATES PROPORTIONS
SIMGLE MARRIED COMBINED
% U, (%) U, (k) w(x)
22 004735 002805 127
23 004745 002833 126
24 004915 002844 126
25 005234 002880 125
26 005517 002987 125
27 005745 003071 124
25 005624 003059 124
29 H05960 003086 123
Standardised
Fates 1.000

z wix) U, (%) 005330

SRRY = ~mmmmmmmoeeee z mmmm——— = 1.8098
z, wn) U, (s} 002945

a . From computer 1istings as shown in the Appendiy
b From Tabie 1:w,(x) = R,(x)/ R, and w,(x) = R,(x)/ R,
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Z wix).U °(x)
SRR® = —=—mmmm e .
Z, w(RLU(x)

Using the data of our illustration, the SRR, i.e. based on observed data, is
1.81 as shown in Table 4. This shows that the mortality of group 1
(bachelors) is 81% higher than the mortality of group 2 (married men}.
Hote that SRRE® i3 in fact the ratio of CMF,and CMF,, both of which are

based on abhserved data.

But CMF like other directly standardised measures depends on the
standard used. For instance, when the population distribution of group 2
(wzix" = Fzzix)/ﬁz) is used instead of w(x), the relative risk goes up to

1.86, showing that the mortality of group 1 is 86% higher than group 2.

4. The question is why the relative risk based on the model is different
from the slandardised relative risk based on the observed data? The
answer is found immediately by comparing the ratic of model CMF's {19)
with SRR® defined above. It is due to the use of estimated rates IJk(x) in

the former (i.e.,:’CNF's) and the observed rates U (x)° in the latter. The
estimated rates Uk{x) are, however, closer to the observed rates as shown

in the output (Appendix) unlike the estimated rates of both the groups
combined (i.e. D(x¥) - see graphs in the Appendix.

S. Besides wvarious reasons quoted earlier, we have used GLIM for
introducing the parameters of an additive log-linear model that could be
easily used for the parameters of its counter-part multiplicative model.
The advantage of using such an multiplicative model is that the relative
rigk obtained from the estimates of the parameters of a multiplicative
model, i.e. w's, ig identical to the relative risks obtained t}\g using the
piecewise constant proportional hazards model (i.e. w,/w, = 8,/ @2("...).

Another reason for using GLIM is that the variance-covariance matrix of
the estimates which are themselves normally distributesd is readily
available, and could be used for finding the standard error of the
siandardised index in question.

The reason of our interest here is, however, that model {11) and the
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additive log-linear mode) fitted on the dota of Table 1 {our illustration)
by using GLIM are identical. The group-specific rates of modei {11}, ie. 8,

are therefore similar to the parameters #, of the unszaturated

mmtimirsativ& (additive log-linear model). Since the estimate of 8 (ie.
f“J) obtained by iteration stands for the SMR of the k-th group, the
estimate of W, may be interpreted as the SMR of the k-th group. This

interpretation could be used only in the case of an additive log-linear
model or its counter-part multiplicative model, ie. the model where
mortality differences are measured by & ratio estimate,

6. It has been found that the piecewise constant proportional hazards
model (in theory as well a3 in the present illustration} provides
estimates of the age-specific rates, and does not deal with the
eztimation of weights required (wich could be used as a standard; note
that the weights used are taken from the observed data, i.e. wi{x)}. Since
model (11} iz similar to an additive log-linear model (unsaturated
model),the saturated log-linear model seems to be & preferable candidate
for solving the problems of both direct and indirect staendardisation. It
may be noted that such models solve the problem of selecting weights
{standards) at once, becsuse the estimates of the parameters of a
saturated model are independent of the weights used. The search for a
standardized index bassd on a saturated model is therefore required.
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APPENDICES : GLIM programs and outputs

A.1. The GLIM constraints

$C RELATIAONSHIP BETWEEN HOEM’'S MODEL (1978) AND L 0G-LINEAR
¢ MODELS USED £FOR STANDARDISATION
iC*ﬁ*%****%****%%%*%**********%ﬁ%%**********%%*******%****%*%%

$C # GLIM ~ CONSTRAINTS
$C%§*%*********%*********%***%%************%******%***********

SUNITS 16
$DATA K X DxX AKX
$READ 1 22 433 91444

1 23 412 84335

1 24 373 75392

1 25 331 63241

1 26 2387 52023

1 27 242 42123

128 215 36915

1 29 192 32215

2 22 24 8555

2 23 3& 12708

2 24 &4 23203

2 25 192 35415

2 26 138 44207

2 27 171 55875

2 28 185 &0470

2 29 200 64770
$C K = NUMBER OF GROUPS (K=1 FOR BATCHELORS. K=2 FOR MARRIED MAN)
%C = A
$C RKX = NUMBER OF PERSONS EXPOSED TO THE RISK OF DEATH AT AGE X

$C IN GROUP K

$C  DKX = NUMBER OF DEATHS AT AGE X IN 3ROUP #

H#CALC T=X-21

FFACTOR K 2 T 8

$VAR B8 XO AX RX DX MUX UX I : 2 TE DE U

FHCALC LKX=ULOG(RKX)

$YVAR DKX

SOFFSET LKX

$ERSOR P

$FIT T+K

$DIBPLAY MAR

FEXTRACT %LPE

HCHLC AD=ACUCDKX) : I=%GL(8.1) :
QK(I)*DKX(I)+DKX(I+8) : RX(I)=RKX(I1)+RKX(I+8)
MUX=DX/R
AX(I)—/FV(I)/RKX(I)
ZC=ACU(RX#AX) :
AX=48X#ZLD/AC

AT=4EXP (~APE(D)) : TE(1)»=4C/%4D : TE(2)=TE(1}/4T :
LA=ZCUCDKX(I}) : ZB=ACUMUXCII#RKX(I)) : DE(1)=VA/%ZB
ZA=JCUCDKX (1483 ) : ZB=Y%UCAU(MIX(II#RKX(I+3)} DE(2)~7A//B
%Qe=DE(L}/DE(R2) :
P=DE/TE  AU=UCL) 4(2)
LX=MUX/AX : XOQ=1+21
PR ¢
v AGE-SPECIFIC MORTALITY RATES @ ¢
L TR Y R X R R Y 2 L
" ASE 0OB53. RATE EST. RATE DISTORTION
K142 Ki+K2 *»
$LDQK XO MUX AX UX

$PR @ : : " PLOT OF OBSERVED (M) AND EXPECTED (A) RATES *
WA 6 I 36 I I S I R SN T

$FLQT MUX AX X0

$PR
" DTANDARDIaED MORTALITY RATIOS
L A R 2 aTe S X
" K=1 =2 (1y/7¢2) *
" HOEM‘S SMR " TE 4T
¢ OBSERVED SMRY DE %3
» DISTORTION * U %U
$5TOP
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SLIM 3011 (C)1977 ROYAL STATISTICAL BSOCIETY, LONDON

SLALED
CyLLE DEVIANCE DF
2 1. 047 7
Y~VARTATE
ERRIR FQImQDN L INKA LAG
OFFSET LKX
L INEAR PREDICTOR
“6M T K
ESTIMATE 8. E. PARAMETER
1 -5.348 . A68RE-D1  £AGM
0 ZERDQ ALIASED T(1)
2 . -49F0E-D2 L HO4A3E-DL T(2)
3 .A4224E-01 LSEPIE-DL T(3)
4 . 7893801 LS73E-D1 T(4)
-] . 1474 . HB37E-Q1  T(5)
é . 1827 L AP62E-D1 T(S)
7 . 1874 . 7070E-01  TA(7)
8 . 2017 7161E-D01 T(8)
O ZER?) ALIASED K1)
? .H111 174E—01 HK(2)
BCALE PARAMETER TAKEN AS 1. 000
LUNIT  OBSERVED FITTED REGID
1 433 434. 79 -. 9181£-01
2 412 415. 0 —-. 1490
2 373 376. 5 -. 1815
4 A31 332, 1 -, FIF0E-01
3 287 284, B . 1392801
& 242 249, 3 . 974701
7 215 211. 7 2235
8 192 i87. 5 3321
7 24 22. 09 4074
10 36 32. 96 2286
11 &6 62, 48 4457
12 102 100. 7 1068
13 138 138. 2 -, 200&6£-01
14 171 172. 5 - 1131
15 185 188. 3 -, 2370
14 200 204. 5 - 3177
AGE-SPECIFIL MORTALITY RATES
3635 303 36 300 30403 6 36 301030 9030 036 36 354036 3 30 0 48 303 36
AGE 088. RATE EBT. RATE DISTORTION
K1+K2 K1+Kk2
1 22. 00 . 43 70E~D2 . 3873E-02 1.180
2 23. ¢0 .4501E-Q2 . 3892E-D2 1. 155
3 24. 0 . A4 3DE -2 . 4040E-D2 1. 097
4 29. 09 . 4382E-02 . A27HE-D2 1, 02456
3 246. 0D L A327E-D2 . 4487E~D2 . 7637
b 27. 00 . A223E-02 . 464FE-D2 . 2083
7 2a. 0D . 4107E-D2 . 467 1E-Q2 L8793
a8 29. ¢0 . GO4ZE~D2 . 47 38BE-D2 8530

32



PLAOT OF OBSERVED (M) AND EXPECTED (A) RATES
HAE I I IR I 3 I I I S

. ABOE~-02
. A73E~02
. 470£~02
. 463E-02
. A60E-02
. 495£~02
. 430£-02
. 44502
. 440E~02
. '4355"‘01_

.........

STANDARDISED MORTALITY RATIOS
2645 3636 36 H 3 IR R SRR I I A RN

Ke=i K=2 (1)!(2)
HOEM ‘8 SMR 1. 228 &&&5 . 843
OBSERVED 8MR 1. 179 7074 1 &b2
DISTORTION D. P03 1 0564 0. 7022

1=
(€}

-y

it

&

: fara
© 3% e o e o o e ok ok ok ok % ok ok ok ol ok ok ok ok k

>

.........

.........

------



A.2. The usual constraints

$C RELATIONSHIP BETWEEN HOEM‘S MODEL (1978) AND L0OG-LINEAR
$C MODELS USED FOR STANDARDISATION
1o f g e S a2 L L X R R Y e

#C * USUAL — CONSTRAINTS *
PO A E T I 3 3123 30342000 3 036 3 6 36333 20 6 B B 3

$UNITS 16
HEDATA K X DXX RKX
$READ 1 22 433 921444
1 23 412 86835
1 24 373 75392
1 25 331 63241
1 26 7 52023
1 27 242 42123
1 28 215 346915
1 29 192 32213
2 22 24 83954
2 23 36 12708
2 24 Hé 23203
2 25 102 35415
2 26 138 446207
2 27 171 535475
2 28 185 60470
2 29 200 &4770
gg % = X?EBER OF BROUPS (K=1 FOR BATCHELORS, K=2 FOR MARRIED MAN)
4C RKX = NUMBER OF PERSONS EXPOSED TO THE RIBK OF DEATH AT AGE X

$C IN GROUP K
= NUMBER OF DEATHS AT AGE X IN SROUP X
$CALC T—X—21
HCALC K2=LEQ(K, 1)-LEG (K, 2)
T2=ZEG(T, 1)-ZEQ(T. 2)
T3=ZEQ(T, 1)-%EQ(T. 3)
T4=YLEQ(T, 1)-JEG(T, 4)
T5=%XEQ(T, 1)~XLEQ(T, 3)
T&=XLEG(T, 1)~%4EQ(T. %)
T7=XEQ(T, 1)-LEQ(T, 7}
T8=LEQ(T, 1)-%EQ(T, &)
FVAR 8 X0 AX RX DX MUX UX I : 2 TE DE U
HCALC LKX=WLOG (RKX)
$YVAR DKX
HOFFSET _LKX
$ERROR P
$FIT TQ+T3*T4+T5+T6+T7+TS+K~
#DISPLAY M
SEXTRACT AFE
HCALC ZD~/CU(DK
DX(I)=0KX

x

I=%6L. (8, 1)
DKX(I+B) : RX(I)=RKX(I)+RKX(I+8)

REKX(I/ZEXP(APE(F) )

23y . TE(L1y=174T @ TE(R)=LT

) 1 AB=YCUMUX(II#RKX(I)) : DE(1)=YA/ZB :
7A=VCU(DKX 8)) : YUB=UCUMIX(I)#RKX(I+3)) : DE(2)=LA/4B :
XG=DE(1)/DE(R) : LT=4EXP(2#LPE(F))

U=DE/TE : %=U(1)/7(2)

UX=MUX/AX : XO=I+21

HPR
" AGE-~-SPECIFIC MORTALITY RATES [ ¢
Lt s Ll s e T T
" AGE 0OB3. RKRATE EST. RATE DISTORTION *®
n KI+K2 K1+K2
$LOOK XO ﬁUX AX UX
$PR : PLOT OF OHSERVED (M) AND EXPECTED (A) RATES ©
u ******%****%***********************%******* "wo.
gg%ﬁT ﬁUX AX X0
n STANDARDISED MORTALITY RATIOS
L Y L L R L ey L
" K=) K= (1)/7¢2) v
v HOEM'E SMR " TE LT
¢ OBSERVED SMRY DE YO
B BISTORTION " U ZU
$E TP



LALIM 311 (CY1977 ROYAL STATISTICAL SOCIETY, L.ONDON
SCALED
CYCLE DEVIANCE DF
2 1.047 7
Y-VARIATE DKX
€RRQR POImSDN LINK LG
OFFS LKX
L. INEAR PREDICTOR
Z6M T2 T3 T4 TS5 Té6 T7 T8 K2
ESTIMATE 5. E. PARAMETER
i -5 545 . 1947E-Q1 %GM
2 . 1032 .4318E-01 T2
3 . HOB93E-D1 .4511E~-D1 T3
4 . 7LI94E-D2 .4303E-D1 T4
S5 - 393BE-D1 .4342E-Q1 TS
& ~.744QE-D1 . A6FDE-DL Té
7 = 7918E-01 .4729E-D1  T7
8 - 23%0E-01 .4B0OLE—-D1 T8
? . 3095 2087E-01 K&
SCALE PARAMETER TAKEN AS 1.:000
UNIT {IBSERVED FITTED RESIDUAL
1 433 434. 9 -, 2181£-01
2 412 415G. O -~. 1490
3 373 I75. S - 1815
4 331 332. 1 -, 9890£~01
5 287 285. 8 . 13928~01
& 242 249Q. 9 . 974701
7 215 211.7 . 2235
B 192 187. 5 . 3321
7 24 22. 0% 4974
10 36 32. 26 5286
11 &b 62. 48 4457
12 102 100. 9 1048
13 138 138. -, 2006£-01
i4 171 172. 9 -. 1151
15 185 188, 3 -, 2370
16 200 204. 5 - 3172
AGE-SPECIFIC MORTALITY RATES
345 46 3038 30335 T30 3304635 36 96 4030 3 B S S0 5
AGE 0BS. RATE EST. RATE DISTORTION
K1+K2 Ki+Ka
1 2:2. G0 . 4570E~D2 . 3504E-D2 1. 304
2 23. 0D . 4501E~D2 . 3521E-D2 1.278
3 24. & . A4FOE-D2 . BESSE-D2 1. 212
4 25. &0 . 4389E~D2 . 3868E-02 1.133
S 24. 0D . A4327E-D2 . A061E-Q2 1. 065
4 27. 00 . 4223E-02 . A2046E-D2 1. 004
7 23. D .4107E-02 . A226E-02 L7220
8 29. &) . 404202 . 4287E-D2 . 7429
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PLOT OF OBSERVED (M) AND EXPECTED (A) RATES
R e Y e E et

. AE2E-02
.456E-02
. 450E-02
. 444£-0:2
. 438E-02
. 4326-02

M

..................

A

§

&

: [
* LR EEE RS EEEE R EE R EEE R

STANDARDISED MORTALITY RATIOS
3435 48 3 36 303036 60 S0 3E SE 30 90 I SE S IS 0
Ke=1 K=i2 (
HOEM 'S GMR 1. 357 Q. 7347
OBSERVED &MR 1.17%2 0. 7074 . bé&2
DISTORTION D. 8588 0. 92629 07022
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PRICE

PER COPY

BF 230
Us$ 6.00

BF 300
Us$ 8.00

BF 230
Us$ 6.00

BF 230
Us$ 6.00

BF 350
us$ 9.00

BF 300
UsS$ 8.00

BF 230
Us$ 6.00

BF 230
Us$ 6.00

BF 230
Us$  6.00

1983-1,

1983-2,

1983-3.

1983-4.

1983-5.

1983-6.

1983-7.

1983-8.

1983-9.

IPD-WORKING PAPERS 1983

R. Lesthaeghe : "A Century of Demographic and Cultural Change in

Western Europe : An Exploration of Underlying Dimensions".

R. Lesthaeghe, C. Vanderhoeft, 5. Becker, M. Kibet : "Individual
and Contextual Effects of Education on Proximate Determinants and
on Life Time Fertility in Kenya".

F. Eelens : "Impact of Breast-feeding on Infant and Child Mortality
with varying Incidence of Malaria - Evidence from the Kenya Fertility
Survey 1977-78".

S. Becker, A. Chowdhury, S. Huffman : "Determinants of Natural
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