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0. INTRODUCTION

Three papers, containing ideas of great importance to stabisti-
cians and other investigators in a number of different scientific disciplines
(biometrics, demography,...) were presented in the early seventies.

In the first place, Cox (1972) introduced a proportional hazards model

in which the base-line hazard (i.e. the nuisance function) was not given
any specific form. Nelder and Wedderburn (1972) defined a class of
generalized linear models and constructed a single algorithm for fitting
any member of this class. Last but not least, Coale and McNeil (1972)
presented a parametric model for the distribution of age at first marriage.
Fach of these three statistical issues has since been Turther developped in
its own right, but over the years it has also been seen that they could be

linked at different points.

Cox (1975) was responsible for the partial likelihood method
related to the proportional hazards model found in his earlier paper.
Several authors addressed their minds to the problem of making inferences
through the partial likelihood method (see Kalbfleisch and Prentice (1980)
or Lawless (1982) for an overview). Other authors suggested alternative
and simpler methods designed to avoid the difficulties associated with
Cox's 1972 ideas. Breslow (1972, 1974) for instance used the notion of
constant hazards between two successive (non-censored) failure times;
and Holford (1976, 1980) divided the periocd of follow-up into fixed intervals.
This last approach is adopted in the present study.

The method developped by Cox (1972, 1975), and the alternative
methods proposed by Breslow (1972, 197h) and Holford (1976, 1980), have
been used by many investigators : e.g. Menken et al (1981), Trussell and
Hammerslough (1983) and more recently Rodriguez (1984) in the world of
demography.

The availability of computers and the development of special
computer packages explains a good part of the attractiveness of the
proportional hazards method. ILaird and Olivier (1981) and Holford (1980)
showed that iterative proportional fitting algorithms (used in connection
with log-linear models for contingency tables) can be used here too.

Baker and Nelder (1978) developped GLIM, a computer package for Titting



the generalized linear models developped by Nelder and Wedderburn (1982).
Since log-linear models are easily fitted through GLIM (Release 3) - as
they are special generalized linear models — we preferred to use this
computer package in the present study. Note also that the partial likeli-
hood corresponding to the models in question can be maximized through

GLIM, as it was pointed out by Whitehead (1980).

The Coale~McNeil (1972) model has also been in constant use
among demographers. Maximum likelihood estimation of the paramcters of the
model is discussed by Rodriguez and Trussell (1980). Although the model
was originally intended for the analysis of the distribution of age at
first marriage, it has also been used in analysis of the age at first birth
(Bloom, 1980). The fitting of the Coale~McNeil model has been simplified
by the computer programme NUPTTAL (Rodriguez and Trussell, 1980).
The application of the Coale-McNeil model i1s not considered in this paper,
but similarities with the models presented in the present study are briefly

noted {(Section 4).

Theorétical issues related to proportional hazards models in
the presence of competing risks have already been discussed by a number
of authors {e.g. Cox (1972), Chiang (1968), Gail (1975), Holt (1978),
Laird and Olivier (1981)). Extended applications are however, at least
to our knowledge, rather rare — especially in demographic studies.
The same remark can be made concerning the problem of stratifying the
proportional hazards model (see Sections 2.3 and 3.3); though some connected

theoretical aspects are considered by Holt (1978).

The present study tries to make some of these advanced statistical
techniques more readily available to the user. With this end in view they
are presented in one big framework. Reference to the mathematical foundations
of the methods has not been avoided since we are convinced that a strong
grasp of the formal mathematical background in question will help the
investigator both to understand what he is doing and toc see what may

further be possible.



. THE DATA

In a survey on fertility and family formation in Flanders (Belgium)
organised by the Centrum voor Bevolkings— en Gezinsstudién (Center for
Population and Family Studies), 3101 women were interviewed during the
period november 1982 - june 1983. These women were born between 1938
and 1961. Because of certain difficulties not all 3101 women were
retained for analysis in the present paper. Two questionnaires had in
fact been used in the survey : one for ever married, and one for never
married women. Due to an error in the guestionnaire for the never married
women, 230 out of a total of 469 never married women had to be excluded
from analysis. Various consistency checks led to the exclusion of a
number of additional cases, so that the final sample contained only 2829

women.

For each of these women we calculated the age of entry into first
union, i.e. either first cohabitation (meaning first cohabitation of
never married women throughout this paper) or first marriage. The women
who, at the time of interview, had never been married or had never co-
habited, are said to be censored. The age at which these women are cen-—
sored (i.e. their age at interview) forms part of the data. Formally,

the data can be summarized in a set of vectors
(a:,8.,2.)._ , (1.1)

where
N iz the number of women in the sample, ’
Zi=(2i1”"’zim) is a vector coding m characteristics for woman i,
.e.g. her date of birth, the highest education level obtained,
religion ete.,
§. is a status variable indicating that women 1 is censored (6i50)
or that her first union was a marriage (6i=1) or a cohabitation (6i=2),
is the age in completed years at which woman i entered any of the
states mentionned above (i.e. censoring, first marriage or first

cohabitation).



Since first union occurs mainly after exact age 15, women entering
into first union before age 15 were excluded. The 15th birthday was next
reset as having a value equal to zero by the translation_giégi—15. Note that
Ei thus stands for the duration in completed years between the 15th birthday
of a woman i and her entry into first umien or the moment when she was
censored. This duration will be referred to as tZme in the remainder of

this text. The data set can now be symbolized as follows
(t.,8.,2.). (1.2)

This will hereafter be called the set of observed individual data. Note that
£:=0,1,2....

If exact ages a; of entry into first union or of censoring would

have been recorded, then we could consider the data set
(1.3)

where t.=a.=15 (with s 2 0). We will refer to (1.3) as the set of (unknown)
exact individual data. Data set (1.3) is important for the construction of the
models discussed later (seevSections 2 and 3) - the likelihood function (or
simply the LZkelihood) for data (1.2) will be derived from the likelihood for
data (1.3). Data set (1.3) makes reference to exact times by (as opposed to
time Ei measured in completed years). Models in continuous time will first be
constructed and they will next be transformed into discrete time models
(through the use of certain assumptions, e.g. that of piecewise constant
hazards — see Section 2.2). The data referred to in discrete time models take
the form of the data set (1.2), whereas the data referred to in continuous

time models take the form of the data set (1.3).

The characteristics - giving rise to three categorical variables

(or covariates) in the present study - are :

— identification of the birth cohort, i.e. covariate COH taking the values
1 for women born between 1948 and 1962 (48-62)
2 for women born between 1938 and 1947 (38-47)



- highest educational level attained, i.e. covariate EDU taking the values
1 for primary education (PRI)
2 for secondary education (SEC)

3 for higher education (HIGH)

- religious affiliation, i.e. covariate REL taking the values
1 for Roman Catholics with regular Mass attendance (RC RMA)
2 for Roman Catholics with irregular or no Mass attendance (RC IRMA)
3 for women who claim no specific religious affiliation {NRA)

b for freethinkers (FREE)

In the rest of this paper we will in general speak about covariates
zi keeping in mind that Zi refers to a vector of covariate valpes Zi1,"'zim
(here m=3) for woman i. All women with the same characteristics (or covari-
ates) z will be referred to as belonging to subgroup zZ, and the set of |
distinct subgroups Z will be symbolized by £ (thus ze®). Note that time Ei
refers in fact to the time interval (Ei,§i+1). Since t. is measured in com-
pleted years, we can identify the interval [Ei,§i+1) for woman i through the
index Zi, where Zi=1 if §i=0, Zi=2 if §i=1, etc. The index Zi varies between

1 and an upper value L which will be specified later.

For each subgroup Z and for each time interval 7 we can then calculate

n, = the number of women in subgroup Z who neither entered first union nor
got censored before the starting point of the 7-th interval (i.e. the
number exposed to risk at the beginning of the Z-th interval),

d?lz = the number of women in subgroup Z who entered the state of first

marriage in the I-th interval,

dQZZ = the number of women in subgroup Z who entered the state of first

cohabitation in the I-th interval,

L the number of women in subgroup Z who were censored in the I-th interval.

The observed individual data set (1.2) can thus be transformed into the

grouped data set (1.L4)

(Z,n (1.k4)

Zz’dTZZ’dQZZ’WZZ’Z)ZEZ;Z=1,...L



Table 1.1 reproduces a few lines from our data set, organized as in (1.4).

Table 1.1 : Organization of grouped data set

covariates Z

/A n,, a7, dyy, v, z =REL z,=EDU 23=CDH
1 29 0 0 1 1 1
2 29 _ 0 0 1 1 1
3 29 1 0 0 1 1 1
i 28 2 0 0 1 1 1
5 26 11 0 o) 1 1 1
6 15 5 0 1 1 1 1
7 9 2 0 0 1 1 1
8 T 2 0 o) 1 1 1
9 5 L 0 0 1 1 1
10 1 1 0 0 1 1 1
1 82 0 0 0 1 1 2
2 82 0 0 0 1 1 2
3 82 3 o) 0 1 1 2
Lo 79 5 0 0 1 1 o
5 Th 5 0 0 1 1 o
6 69 11 0 0 1 1 2
7 58 10 0 0 1 1 2
8 L8 21 0 0 1 1 2
9 27 14 0 0 1 1 2

Thus, 29 women with covariates z, =1, 22=1, z.=1 (i.e. Roman Catholic women

with regular Mass attendance, wh;se highest gducational level is primary
education, and born between 1948 and 1962) are exposed to risk at the
starting point of the first interval (I=1), i.e. at exact age 15.

No woman in this subgroup either entered the state of first union or was
censored during the first interval (Z=1), i.e. between exact ages 15 and 16,
so that the 29 women were still exposed to risk at the beginning of the
second time interval (7=2) (i.e. at exact age 16). Note that N4

nZZ“d1ZZ_d2ZZ-$wZZ in general.



Note further that some women enter the state of first union or are
censored at ages beyond exact age 36. These women, however, constitute
only a small fraction of the total sample. We have not excluded these
women from analysis, but they are considered as being censored at exact
age 36, i.e. at the end of the 21th interval. Consequently, the upper
value L of the index 7 defined(a?ove is 21, The grouped data (1.4} is

1

then said to be time—censored.

If we were to omit the distinction between first marriage and first

cohabitation and consider only first unions as such, we could define

- + - . . . .
dZZ d1ZZ dEZZ the number of women in subgroup Z experiencing first

union in the Zth time interval.
This would lead to the grouped data form

(Z’nZz’dzz’WZz’z)Zei;Z=1,.,.L (1.5)

The corresponding individual data are still of the form (1.2) or (1.3),
but the status variable Si then takes only the values zero for censored
women and 1 for women who enter either the state of first marriage or the

state of first cohabitation.

For convenience, we will use the following terminology throughout

the paper :

- if woman i enters the state of first marriage (6i=1), it will be said

that she enters the state of firet union due to cause 1,

~ if woman 1 enters the state of first cohabitation (6i=2), it will be

said that she enters the state of first unton due to cause 2.

In general, a woman will be sald to enter the state of filrst union due

to cause j (j=1,2). The use of this terminology has various advantages :
(1°)the discussion in Section 3 is substantially simplified; (2°)the termino-
logy used is made similar to that used 1in cause-specific mortality studies;

and (3°)extension from 2 to J causes (J > 2) is straightforward.



2. THE FIRST UNION MODEL

2.1. Mathematical Formulation and likelihood construction

Let T be a continuous random variable, representing the time
(i.e. age since 15th birthday) at which a woman enters the state of first

union. Note that T cannot be observed for censored women.

The hazard function (or the instantaneous rate) of entering
the state of first union at time t is, for women with characteristics z,
defined as
. <T < 1=
Wb52) = 1im BEST <t + [T >1,2) ,
At¥O At

This means that for an arbitrarily small interval [t,t+At), the quantity
u(t3z).At can be interpreted as the probability that a woman with
covariates Z enters the state of first union in the time interval [t,t+At),
given that she has not done so before time t. HNote that this is s

conditional probability.

The probability, S(t;z), that a woman with covariates Z does not
enter the state of first union in the time interval [0,t) - i.e. the

survivor function for women with covariates Z - is defined as
S(t3z)=P(T =21t | z).

It may be shown than that the hazard function and the survivor function
for women with covariates Z are related through the equation (see Appen—

dix E1)
t
S(tiz)=exp(~ s u(s;z)ds) (2.2a)
O

or equivalently

w(tsz)=- 7%; log S(t:z). (2.2b)



Yet another function useful in the present discussion is the

cumulative hazard function, A(t;Z)say. Defining it as

t
AMtsz) = [ u(s;z)ds,
O
we have
S(t3z) = exp(-A(t;2)). (2.3)

The (unconditional) probability that a woman with covariates Z
enters the state of first union in [t,t+At) is approximated by the product
S(t32z).u(t32)At, which will be denoted by f(t;z)At, where f(t3;Z) is the
corresponding probability density function (p.d.f.). Thus

Fltsz) = S(t;z2)ult;z), (2.%)
Note that f(t;z) = - 7%; S(t3z). (Appendix E2).

The probability that a woman with covariates Z experiences first

union in [0,t) is given by anyone of the following relations

Fltyz) = 1 - S(t32) (2.5a)
t
= [ f(s;z)ds (2.5b)
o
t
= [ S(s;z)u(s;z)ds. (2.5¢)
o

F(t;z) is called the cumulative distribution function (c.d.f.). Note

that f(t;z) = Tgi-F(t;Z).

The ultimate proportion of women with covariates Z who will ever
experience first union, or the probability that a woman with covariastes z

ever enters the state of first union, is defined by

e(z) = Fle;z2) =t£1§ F(t;z) (2.6)



=10~

Clearly, c(z) can be less than unity for some (or all) subgroups Z.

If ¢(z)=1, first union is said to be wniversal in subgroup Z.

Finally, the conditional probability of entering first union in
the interval [t,t+h), given that first union has not occured before t

and given covariates Z, is

t+h

) = 1 SleEleE] o (21
- }jh _-‘Sigi_%_ as (2.70)
_ F(t-*-g(;éz?;’(tﬂ) (2.7¢)
_ S(t;é?;féi}:"‘h;l) (2.7a)
= 1 = exp(=(A(t+h;2)-A(t;2))). (2.7e)

The likelihood for the {unknown) exact individual data (1.3)
can now be constructed. In order to do this, note that the contribution
to this likelihood of a woman i who experiences first union (6i=1) at
exact time t. is f(ti;zi)=S(ti;Zi).u(tigzi), and that the contribution
of a woman i1 who is censored {Si=0) at’ exact time ti is S.S(ti;zi)'
In general, the contribution of woman i is S(tigzi)(u(tigzi)) 1. TUnder the
assumption that the individual data are independent, and that the mechanisms
of entering the state of first union and of censocring are independent,

the likelihood for the {unknown) exact individual data (1.3) is proporticnal

to
§.

1 (.52, ) (ult,32.0) (2.8)

)
i
=B

i
. %' . .. (2) .
With defined as the get of distinct observed covariates Z

as in Section 1, obvicus reorganization of the factors involved yields

8.
1

L= 1 T S(ti;z) (u(ti;z)) , (2.9)
ze® 1e®(0,2)
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‘where 6{(t,z) is the set of women i with covariates Z who are at time t
exposed to the risk of entering the state of first union, i.e.

women with ti =t

Since it is clear from (2.9) that the likelihood (£) is a product
of likelihoods for different subgroups Z, reference to covariates Z may
be dropped from the notation as long as the discussion does not concern

them explicitly. The likelihood is then

S,
L= 1 st )u(t)) " (2.10)
ie®(0)
Since it is convenient to work with the log-likelihood rather
than with the likelihood as such, it is useful to keep the following

formulae in mind.

log £ = Z {6, log u(t;) + log 5(t;)} (2.11a)
1
= Z{8, log u(t.) = A(t;)} (2.11b)

1



-

2.2. Piecewise exponential models

Consider a set of intervals [ao,a1),{a1,a

- _ (3)
a =0 and a4 <iaZ(Z—1,...$}.

2),..,.[aL_1,aL), with
Assume that the hazard u(t) (ignoring
covariates Z) is constant in each interval [az_1,az), say
%1
u(t) = e for a;_, St <a; . (2.12)
Note that the exponentiation ensures that the hazard is positive (without

any further contraint on the parameters az) as 1t should be.

In particular, if the hazard is constant over the entire interval

{QO,QL), we get the model

u(t) = & for a <t <a; (2.13)
Since time is exponentially distributed in [aO,aL) under model (2.13),
whereas under model (2.12) its distribution is only separately exponential

in each interval [aZ-T’aZ)’ the latter model is called a piecewise

exponential model.

The lengths of the intervals in the above partition may vary and
be different from uwnity. Clearly reality is better approximated by smaller
intervals. However, since our unit of time measurement has been taken to
be 1 year (Section 1), the length of the intervals we will deal with will
not be legs than 1 : we will continue to use intervals of unit length
(i.e. aZ=Z). The mathematical formulation developed for intervals of unit
length can easily be adopted for a partition into intervals with different
lengths, though this will not be treated here as it is not essential

for our purpose.

Under model (2.12), the cumulative hazard function becomes

(X.k az
M) = Z e +e " {t-a, ) for a, . <t <a, . (2.14)
-1 -1 A
The survivor function can be found from S(t) = exp(-A(t)) using the value

of A(t) given in (2.1&L€g)
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The conditional probability of entering into first union in the
I-th interval, given that first union has not been experienced before
a,_q» is (under model (2.12), using (2.1L4) and (2.7¢)) found to be
%

a; = ala;_,1) =1 -¢° (2.15)

Substitution of (2.12) and (2.14) in (2.11b) gives us the log-

likelihood for the piecewise exponential model, which, after some rearrange-—

ment of terms (Holford (1976, 1980); Laird and Olivier (1981)), can be

expressed as follows
L oy
log £L = Z{ dy.op = Ejue 7], (2.16)
1=1

where dz is the number of women who experience first union in the I-th
interval and where EZ stands for the exact exposure time (person-years lived
outside the state of first union) in the Z-th interval. The log-likelihood
for the exponential model (2.13) is easily found from (2.16) using 0,0

log £ = d.o - E.e”, (2.17)

where d = 2 dZ and E = 2 EZ are respectively the total number of women
who experience first union in [ao,aL) and the total exposure time in

[ao,az).

If the exact individual data (1.3) were known, the exposure times
EZ could be calculated exactly. However, since we observe only the indivi-

dual data (1.2), only an appropriate estimation EZ for EZ can be arrived at.

We will use the estimation

E. = % %, (2.18a)
A . 1l
1€§%
7 Iy = =
with EiZ 11if Ei = az
= <
V2ifa, , <t <a (2.18b)

i
o
P
=
It
(bl
A
Q
o4
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where E?Z is an estimate of the exact exposure time Eiz for woman 1 in the
I-th (unit—) interval, and where HZ = Q(QZ-T)’ the set of women who at the
beginning of the I-th interval, have not yet experienced first union. The es—
timation (2.18b) assumes that all events (i.e. entering into first union

or censoring) are uniformly distributed over each interval [QZ;T’QZ)’ an
assumption which seems to be appropriate for our data on first union

(Section 1).<5)

Substitution of (2.18a~b) in {2.16) gives us the log-likelihood

L ~ az
log L = T { dy.0; —~E e 7} (2.19)

1=1 A
which is in fact the log-likelihood for the individual data (1.2) - under
the above assumption — and clearly also for the grouped data (1.5) (if

covariates are ignored).

Reintroducing covariates z in the discussion, we have, by (2.9)
and the comment which follows 1t
L

logf= 2 X {4
zek 1=1

67
~ 1z
17°%7 ~ EZZ.e } (2.20)

which is the log-likelihood for the data (1.2) or (1.5) under the model

o .
w(tsz) = e Lz for a,_. <t <1az (2.21)

i.e. assuming a piecewise exponential model for each subgroup z. Note

~ 1, . .
that EZZ = nZZ > QWZZ + dZZ) where nZZ, WZZ and dZZ are defined in
Section 1.

The solution of the system of mawimum likelihood equations
obtained by equating the partial derivatives of log £ in (2.20) with
respect Lo each parameter a4, to zero yields the following estimates for the

‘hazards in {2.21).

wt;z) = e = for az_i‘SZt <iaz (2.22)
Thus, under the piecewise exponential model the hazard in the 7Z-th interval,

and for subgroup Z, is estimated by the (observed) occurence-exposure rate

de/EZz'
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2.3 Proportional harzards models

Model (2.21) does not specify any relation between subgroups.
In fact, application of (2.21), with estimates as in (2.22), is equivalent
to the application of standard life table techniques for each subgroup
separately. The proportional hazards (PH) assumption provides a way of

modelling the relation between subgroups.

The simplest form of the PH model is

az B

u(t;z) = e “.e z for a_, <t <:az, (2.23)
where the parameter SZ depends merely on covariates Z and the parameter az
depends merely on time. If we suppose that BZ = O for some z, -z, signifying
ol

a reference subgroup - then the series exp(az) (Z=1,...L) gives the hazard
function for this reference subgroup. The parameter exp(az) will in this case
be referred to as the base—~line hazard (for the 7-th interval); and each
parameter BZ becomes a measure of the difference between subgroup Z and the
reference subgroup zZ_- Alternatively, this difference is measured by the
relative risk u(t;z)/u(tszo)- Under the PH model (2.23) this relative risk

is constant over time and equal to exp (BZ}. It is said that covariates Z

act multiplicatively on the hazard. Note also that under the PH model there
is no interaction between time t and covariates Z, whereas the general model

(2.21) allows for such interactions.

A model which is less restrictive than the PH model (2.23) but more
restrictive than the general (piecewise exponential) model (2.21) is the so
called stratified proportional hazards (SPH) model. We now introduce this

model through an example.

Consider the covariates REL, EDU and ‘COH as defined in Section 1.

Let z, = REL, z, = EDU and z, = COH, so that we have z = (21,z2,23} =

(REL,EDY,COH). As in Sectioz 1 we shall, when necessary, use the expression
subgroup z to refer in general to any one of the subgroups to which the
sample population is partitioned by virtue of all covariates Zys Zp and Zg-
In the present example we have 24 such subgroups : (1,1,1), (1,1,2), (1,2,1),
(1,2,2) 5ennnne (4,3,2). Note for instance that subgroup (1,2,1) is the set
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of Roman Catholic women with regular Mass attendance, having secondary educa-—

tion as the highest educational level attained and born between 1948 and 1962.

Under the PH model (2.23), the time dependence of experiencing first
union in each subgroup Z is measured by the same series of base-line hazards
exp (az) (Z =1,....L). The PH model may however not provide a satisfactory
fit for the data, and this could perhaps be attributed to the inappropriateness
of using the same base-line hazards exp (az) for all subgroups. Suppose now
that there is sufficilent evidence that a better fit would emerge through the
use of different base-line hazards for the different layers {(or strata) into
which the total sample population could be partitioned in relation to one or
more covariates. Such a partition would arise in the example under considera-
tion if, for instance, each group of women characterized by a specific religious
affiliation were considered as a stratum. We would then have U strata to

deal with : 1.e.

REL = 1 : Roman Catholic women with regular Mass attendance,

REL = 2 : Roman Catholic women with irregular or nc Mass attendance,
REL = 3 : women with no religious affiliation,
REL = L : freethinkers.

We will spesk generally about a stratum Zys in the same way that we speak
about a subgroup Z. Note that we can specify 6 subgroups referenced in
relation to the remaining covariates z. = EDU and z_ = COH in each of the

2 3

4 strata. For instance, in stratum z, = REL = 1 we have the subgroups (1,1,1),

1
(1,1,2), (1,2,1), (1,2,2), (1,3,1) and (1,3,2). (See Figure C1.)

Suppose now that the time dependence of the experience of first
union in stratum Z, is measured by the series of hazards exp (azz ) (I=1,...L).
1
There are 4 such series in the present example, and there is in general no
simple relation between them. Suppose further that the hazards for an
could be obtained simply by multiplying

).

arbitrary subgroup Z in stratum Z4

the series of hazards exp (azz Y {7 =1,....L) by a single factor exp (B
1

The series of hazards measuring the experience of first union of a subgroup

Zz

Z in stratum z, would then be given by exp (azz + BZ) (Z=1,....0).
1
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In other words, within each of the 4 strata Z,, We have cgnsidered a simple
PH model. The resulting model valid for all the strata considered is called
a SPH model.

In general, the SPH model can be symbolized as follows.
u(t;z) = e e fora, . <t <a (2.2k)

where Z is a subgroup in stratum z,. Note that this notation is quite
general with respect to the stratumz1 : i.e. the stratification may depend
on more than one covariate — say covariates ZysesesZ s in which case we

1

TEERE z ). If the remaining
1

1 covariates zm1+1,...,zm are used to define a 1 x (m—m1);vector 22 =

‘define a 1 x m, vector Z. as being equal to (z

m-m

z +1,....,zm), then the 1 x m vector z = (21,22)fdén0tes a general subgroup

n
1
in stratum Z.. Since the stratification effected above was done in reference

1
to the covariate REL, z, is the 1 x 1 vector (zj) = (REL), and Z, becomes the

1 x 2 vector (22,23) = (EDU,COH). 1In the applications given later (Section 2.5)

we will have occasion to conslder the case where Z, 1s taken as the 1 x 2

1
vector (21,z2) = (REL, EDU). ©Note that in this case there are 2 stratifying

variables REL and EDU.

Consider now a reference subgroup zZ, in each stratum Z,, and suppose

1

that exp (Szi} = 0. The relative risk exp (SZ) would then measure the difference
between the © experiences:of: first union in subgroup Z = (ZI’ZE) and the

corresponding reference subgroup Zo' Note that ZO is a 1 x m vector (21,220)

and that the first m, components of Z and ZO are equal. The element Z of

20

covariates which, with the m, covariates

1

vector ZO is merely a vector of m-m,

of Z., serves to define the subgroup Z . (See Figure C1.)

The following relations should be noted (Appendix E3). Under the
PH model (2.23) it can be shown that
8

Z
(S(t;zo))e : (2.25)

3(t;z)

B

A(t32) = A5z ).e z (2.26)

8Z
(=]

q;(z) =1~ (i—qz(zo)) (2.27)
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If zZ is an arbitrary subgroup in a specific stratum and if ZO is the
corresponding reference subgroup in the same stratum — i.e. if Z = (21,22)
and z = (21,220

stratum Z1 - then formulae (2.25) to (2.27) are also valid under the

SPH model (2.24).

) so that the two subgroups are situated in the same

Using the SPH model (2.2L4), the experience of first union is
described by a set of series of base-line hazards exp (aZZ ) (Z=1,....L) -
i.e. one series for each stratum z, - and a set of relative risks exp (BZ).
There is in general no simple relationship between the base-line hazards

exp (alz,) of any one stratum z' (say) and those, exp (o,_i), of another
1

"
1 ZZ1

stratum Z? (say). Thus the two series of base-line hazards can be completely
different, meaning that the time dependence of the experience of first union
in the two strata can be quite different. Particular cases of the general
SPH model may be obtained by assuming a specific relation between base~line

hazards. In our case it was found useful to assume (1°) that the entrance
into first union of women in stratum Z% starts b units ahead of that of women
in stratum Z', and (2°) that once the process has begun in the two strata, the

1
corresponding hazards are proportional. In other words : whereas the general
SPH model leads to the loss of the assumpbtion of proportional hazards across
strata, our parametrization of the stratification will readopt this assumption

after taking into account the different starting points. This can be

symbolized by the equation

"

u(t;ZO) = u(t+b;zo)-ew (2.28a)

where Zé and Zg are the reference subgroups in the two strata Z% and Zq

respectively. If b is an integer (see Section 2.4), then we may rewrite

{(2.28a) as

%721 ®4pzn T W
e [ e ! (2.28v)

The following relations can then be shown to hold (Appendix Ek)

: w
(5(t+b32!))° (2.29)

[

S(t;Zé)

- T w
A(t;Z(’J) = A(t+b,zo).e (2.30)

w
qla; 1,1520) =1 = (1-—q(az_1+b,1;zg))e . (2.31a)
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The latter equation may be written as

w
e

q,(zt) = 1-(1 = qy,(20)) (2.310)

Q

if b is an integer.

Equations (2.29) to (2.31), which are all equivalent to equation
(2.28), are useful for comparison of reference subgroups in different
strata. For comparisons within a particular stratum 21, one can use formulae
(2.25) to (2.27). Comparison of an arbitrary subgroup in one stratum with
an arbitrary subgroup in another stratum is now, in the SPH model with the
additional assumption (2.38a), also possible through the use of just a few
parameters. Before explaining this in detail we make the following remark

concerning the concept of reference subgroups in SPH models.

It is convenient to define the reference subgroups Zg and Zg for
any two strata Z% and Zg by the vectors (Z%’ZQO) and (Z?’ZZO) respectively.

Note that 220, a particular 1 x (mrm1) vector, is the same here for all strata.

In our example, we could, for instance, take the reference subgroups (1,1,1),
(2,1,1), (3,1,1) and (4,7,1). As a matter of fact, equation (2.28a) would
then serve to compare any two reference subgroups of women with different
religious affiliation ~ i.e. women in different strata - but with the same
level of education attained and belonging to the same birth cohort. The shift
parameters b and the relative risks exp (w) then measure the effect of the
covariate REL. TIn general, the shift parameters b and the relative risks

exp (w) measure the effect of the stratifying variables z ‘o (adjusted

peen
! 1

for effects of the remaining covariates z H,....Zm).

1

From (2.28a) we see that it makes sense to introduce the concept

of a reference stratum. 1Ff ZWO is the 1 x m, vector denoting the reference
gtratum, 1if Z o igs the reference subgroup in the reference stratum Z,0s and

if zZ is the reference subgroup in an arbitrary stratum Z,, then equation

1’
(2.28a) may be rewritten as

u(t;zo) =ult +b, 52z ).e (2.32}

1 00
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where b_ and w, together, as mentionned in the previous paragraph, measure
1 1

the difference between stratumiT and the (fixed) reference stratum 210.(6)

Further, if z is an arbitrary subgroup in stratum Z. , then we have

1

, 8,
u(t;z) = u(t;zo),e ,

and the combination of this relation with (2.32) gives :
wz1+Bz

. = + .
u(tyz) = u(t bz1’zoo)'e .

If we define new parameters Bé to be equal to w +BZ (if z is a subgroup

Z

of stratum 21), then we get the relation

BY
wltsz) = u(t+bz ;ZOO).e Z (2.33)
1

Strictly speaking the model (2.33) is a SPH model. However,
apart from the shift, the formula is that for ordinary PH models. This
implies that the relative risks exp (82) can be interpreted as the
relative risks in ordinary PH models : i.e. exp (Sé) measures the difference
after adjusting for the

between subgroup Z and the reference subgroup,ZO
(7 Note that (2.33) refers

0
difference in starting points in different strata.

only tc cne reference subgroup Zo- The process of entry into first union
is thus completely described by (1°) a base-line hazard u(tgzoo) correspon—

ding to the reference subgroup Z oo (2°) the shift parameters bz measuring
1

the difference between starting points in stratum z, and the reference

stratum Z.q {(to which Z.o belongs), and (3°) the (adjusted) relative risks

exp (Bé) which measure the remaining difference between the process in

subgroup z (in stratum 21) and in subgroup zoo'

Consider now two arbitrary subgroups of women in different strata

but whose characteristics measured by the covariates Z 4qor By are the

1
same. Such subgroups can in general be denoted Dy the 1 x m vectors z' =

(z;,zg) and z''= (z;,zg). Since the SPH model implies a simple PH model

within each stratum, the difference between subgroup Z' and the corresponding

) in stratum zZ! is measured by the relative

reference subgroup Zé = (z; !

2450
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risk exp (Bz*) = u(t;Z’)Xu(t;Zé). Similarly, the relative risk exp (an) =

u(t;Z")/u(tgzg) measures the difference between subgroup Z"

and the correspon-

ding reference subgroup Zg = (2",z,,.) in stratum z". In other words, exp (82,)

1?2720 1

measures the effect of the covariates z s s
m1+1 m 1

..% in stratum z', and exp”(Bzu)

measures the effect of the same covariates in stratum_zq. In general, estimates

of exp (BZ.) and exp (an) will be different, meaning that the effect of the

covariates Zo w10 Py is different across strata. A special SPH model would
1

be obtained by assuming that the effect of covariates z eeZ does not

m1+1 >

depend on strata. Formally, exp (BZ,) is then equal to exp (BZ")’ and these

), where z
2
vector of covariate values zm'+1,.....zm. In this case, the model formula

(2.24) becomes !

relative risks may then be denoted by exp (B is the 1 x (m~m1)

Z 2

wit;z) = e 1.8 2 for a;_; <t <:az,

where Z still remains (21,22). It is easy to see that there is then no

interaction between the stratifying covariates ByseeseZ and the remaining
1
.2 .

m1+1"" m

covariates z

Use of the assumption of no interaction between stratifying

covariates z,,....2  and remalning covariates z
1 m, m1+1
SPH model (2.33) implies the relation BY = w, +8, (if z = (21,22)) and
1 2

,....zm under the

hence yields the model formula

u(ts;z) = u(t+bz ;ZOO)-e e 2, (2.3k)
1

relating an arbitrary subgroup Z = (21,22) in stratum z, to the reference

subgroup ZOO in the reference stratum Z Under this model the process

10°
of entry into first union can thus be described by (1°) a single base-line

hazard u(t;zoo), (2°) shift parameters bz measuring the difference between
1

starting points across strata, (3°) relative risks exp (w measuring the

)
%
remaining difference between strata, and (4°) relative risks exp (BZ )
2

measuring the difference between subgroups within each stratum.
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Note that under the models (2.33) or (2.34) the formula relating
survivor functions, cumulative hazard functions or conditional probabilities

can be easily derived from formulae (2.29) to (2.31) by replacing Zé, Zg,

b and wbyzZ, Z_ , b

; .
00 2 and BZ respectively.

1
Replacing the parameters @ZZ in (2.20) by mZ+BZ yields the log—

likelihood for the PH model (2.23)

~

log L= = T{a, .(a,+6.) - E,_.e © 1. (2.35)
762 1=1 1z°*7L "~z iz

L az+8

Similarly, if we replace oy

, in (2.20) by a221+ BZ, then we get the log-

likelihood for the SPH model (2.24)

L - O‘ergz
logd = 2 Z{d,_.(a,, +B_) - E,_.e
7e% 1=1 27 7lz, "z lz

. (2.36)

Estimates of the parameters are found by solving the system of
maximum likelihood equations, which are obtained by equating the partial
derivatives of log £ with respect to each parameter to zero. In general,
the maximum likelihood equations must be solved by iteration, and a closed
form expression (such as (2.22)) for the parameters does not exist. {Some

details are given in Appendix ES5.)
Under the special SPH model {2.33) the log-likelihood is

L ~ °"Z+bz 6y
log L= = Z{a,,.(c + B!') - E,_.e T} (2.37)
ze& 1=1 Lz Z+bz1 § &

where it is assumed again that the hazards are piecewise constant (over

intervals of unit length) and that the parameters bz are integers. We
1
cannot obtain a system of maximum likelihood equations in the parameters
Bé, bz and oy simultanecusly. However, it 1s possible to estimate the
1
'param@terS‘az and Bé (simultaneously) if the parameters bz are fixed.
‘ 1

The construction of the appropriate system of maximum likelihood equations
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is tedious. However, the solution of the problem is quite simple if we use

should be translated over bz

the idea that the time range for stratum z,
' i
units relative to the time range in the reference stratum. After such
translations, the reduced problem is eguivalent to the problem of estimating

o and BZ under the PH model; i.e. maximization of log £ in (2.35).

A method for maximization of the log-likelihoods (2.35) and (2.36)

will be discussed in the following section.
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2.4 Estimation through GLIM

It will be shown in this section that the (log-) likelihoods
considered previously can be maximized through a method developped for a
class of generalized linear models (GLM} by Nelder and Wedderburn (1972).
The discussion which follows is GLIM3 oriented, since this computer

(8)

package is extensively used in the applications.

To begin with, note that the log-likelihoods (2.35), (2.36) and
(2.37) are special cases of the log-likelihood (2.20), but that maximum
likelihood estimation of the shift parameters in (2.37) is not possible.
For a general discussion of the methods involved, we will therefore

concentrate on the estimation of the parameters g in the log-likelihood (2.20).

A GILM suitable for use with GLIM3 is defined by specifying the
following three model components (Baker and Nelder, 1978) :

(1°) & set of dependent variables, which are statistically independent
and whose distributions belong to the exponential family (The dis-—

tribution of the dependent variables is called the error structure);

(2°) a set of independent variables and the way in which they are related
to each other in producing their effects on the dependent variables
(This is expressed in the Iinear predictor - a. linear combination of
the independent variables. HNote that any categorical variables
(c0variates) in use and interactions between them should be transformed

into dummy variables in order to allow a linear combination.);

(3°) the manner in which the independent variables act on the dependent
variables (The function relating the linear predictor to the

dependent variables is called the lZmk).

It is now necessary to define a GLM - i.e. through specification
of the three components discussed above — which would lead tc the same
parameter estimates as those obtained through the maximization of log £

in (2.20). The required GLM is defined as follows

(1°) the dependent variables — with realisations d;, (ze 32=1,...L) -
are assumed to be statistically independent and Polisson distributed
with means MZZ’ say - (The countS'dzzﬁare then said to have the

Poisson error structure);



-2 5

(2°) the covariates (i.e. categorical independent variables) taken into
count consist of a time covariate - with levels I=1,...7 and other
covariates denoted by the vector Z : the corresponding linear

predictor will be dencted by Gy5
(3°) the link between the linear predictor a and the mean MZZ of the

dependent variable dZZ is presumed to be given by

M = E + . .
log M, = log B, + o, (2.38)
where EZZ is the corresponding (approximate) exposure time.

d72 Mz

Since the relevant Poisson probabilities take the form MZZ .e /dZZi,
the likelihood for the GLM defined above will be proportional to
- d -M
L= 1 1 Mziz.e tz, (2.39)
z 1
Substitution of (2.38) in (2.39) gives
o
~ iz
- 4 d,_.o ~B,_.e
L= 1 Bz, N2 (2.40)
lz
z 1
Taking logarithms we get
P ~ ~ %17
L= 2 Z . . - . . .
log 2 (dZZ log By, + d, .0, ~ B/ .e ) (2.k41)

Maximization of log £ in (2.20) and log £ in (2.41) is equivalent, since

the right hand sides of the two equations in question differ only by a

constant term (i.e. Z 2 dZZ'lOg Eiz).
z1
A remark concerning equation (2.38) is in order at this point.
This equation shows that the link function relates the means Miz not merely
to the covariates 7 (i.e. the time covariate) and Z, but also to the
exposure times ﬁiz. It follows that log Eéz takes on the nature of a

continuous independent variable. It would moreover have a ccefficient

equal to unity if it were used as a regressor in a regression model.
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o~

In the language of GLIM this would mean that if log EZZ toa,, is the
linear predictor, part of it needs to be fixed. A fixed term forming
part of the linear predictor is referred to in GLIM as an offset.

The $OFFSET-statement effects this fixation.

Bolford (1980) shows that the likelihood (2.40) may be derived
in other ways : it can for instance be assumed that the individual exposure
times in each interval are exponentially distributed, or it can be assumed
that the vectors (dZZ)ZEa.have a multinomial distribution. (Laird and Olivier
(1981) on the oﬁper hand say tE?t tge dZZ have a Poisson distribution,
conditional on EZZ’ with mean EZZ.e ZZ.)

likelihood estimates of the parameters a,, can be obtained using either

(9)

It follows then that the maximum
techniques for log-linear models (in relation to rates) or techniques
for multinomial frequencies. Commonly used algorithms are often based
either on iterative proportional fitting (IPF) or on Newton-Raphson methods.
It has been shown above that the models presented in previous sections are
equivalent to a particular GIM. Thus, the GLIM3 computer package can now
be used. Note that the algorithms in question employ <Zterative weighted
least squares, derived from the more general Newton-Raphson algorithm

(Nelder and Wedderburn, 1972).

Since the time covariate I in the above GLM is a categorical
variable, the length of the intervals need not necessarily be unity. In
the latter eventuality, the (approximate) exposure times Eéz should then
be recalculated : i.e. multiply the individual exposure times in (2.18b)
by the interval length a;=a; -

Having shown that the general piecewise exponential model (2.21)
with log-likelihood (2.20) can be fitted to the data by using the GLIM3
package, it is now necessary to construct appropriate GLIM3 programmes
which would suite the PH and SPH models — special cases of the general
model (2.21) - described in Section 2.3. These GLIM3 programmes consist
of three main parts : (1°) definition of appropriate vectors containing
the data and/or other quantities used in the rest of the programme;

(2°) construction of the model and its corresponding fitting device;
(3°) further compﬁtations to get the results desired from the fit in an
appropriate form, and the display of these results. We shall discuss these

three parts in the following paragraphs. The discussion is based on the

GLIM3-programme shown in Appendix B1.
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The first part of the programme in Appendix B1 = called the
data definition part hereafter — consists of the first seven lines.
The $UNITS—statement defines the length of the vectors (to be defined
later). In our case — and it is so in general - the number of wnits
is equal to the length of the data file. The vectors which will contain
the data are then defined ($DATA-statement) and the data are read in subse-
quently ($DINPUT-statement). The following vectors will be used in the

present text.

BT = the lower boundary of an age interval (i.e. BT takes the values
15, 16,....35);

N = the number of women at risk at age BT (i.e. at the beginning of

the age interval [BT,BT+1));

D1 = the number of women who enter first marriage in age interval

[ BT ,BT+1);

D2 = the number of women who enter into first cohabitation in age

interval [ BT,BT+1);

W = the number of women withdrawn (or censored) in age interval

[ BT,BT+1);
REL = the religious category to which the women in question belongs;

EDU = their education category;

COH = the birth-cohort to which they belong.

The age variable BT is transformed into the time variable T. In fact T

stands then for the numbering . of the age intervals [az_1,az). Since

all the covariates REL, EDU and COH are categorical, and since the time
variable T as defined above is also categorical, the number of categories

of each of these covariates (called factors in GLIM3) has to be defined
through the $FACTOR-statement. The models described in Section 2 do not

deal separately with the numbers of first marriage (D1) and first cohabitation
(D2), but only with their sum, i.e. the number of first unions as such.

These are stored in vector D. Finally, the log-exposure times are calculated

and stored in vector LE.

It should be noted that vectors which will not be used after the
data definition part may be deleted. In our example we deleted D1 and DZ2;
we could also have deleted N, W and BT.



-8

‘In the model definition/fit part of the GLIM3 programme, we
speclify the dependent-variable ($YVAR—statement), the error structure
($ERROR-statement) and the offset ($OFFSET-statement). The linear predictor
is defined and the model is fitted through the $FIT-statement. Note that
the link function is implicitly defined in the $ERROR-statement — the log
link function being the default setting for the Poisson error sﬁructure
(Baker and Nelder, 1978).

In models used for the analysis of first union as such, D will
always be the dependent variable, the error structure will always be
Poisson and the offset will always be the log-exposure time LE. Hence,
the $YVAR-, $ERROR- and the $OFFSET-statement may not be modified.

Thus, only the $FIT-statement calls for modification so as to suite the
model to be fitted. In other words, the GLIM3 expression defining the
linear predictor o, has to be in line with the model to be fitted.

Detalls about the construction of the linear predictor will be given later.

Whereas the data definition part and the model definition/fit
part of a GLIM3 programme are strongly dependent on the format of the data
and the nature of the model to be fitted, the results part is not bound
by any of these links and 1s consequently very flexible : the investigator
can thus compute and display any quantity of interest. One could, for
instance, compute various test statistics, relative risks, (base—line)
hazards, survival functions, standard errors of relative risks, etc.

In most of our applications we opted for the calculation and/or display
of the following results : the terms in the linear predictor (L option in
the $DISPLAY-statement), the estimated values of the linear parameters

and their standard errors (A option in the $DISPLAY~statement), and two
test statistics with the corresponding number of degrees of freedom.

These test statistics are defined and discussed in Appendix E7. Note that
the log-likelihood statistic for the saturated model - i.e. the observed
~-2.1log £ value - is computed already between the data definition part and

the model definition/fit part.

In certain programmes (or applications) we inserted the computation
of base-line hazards and relative risks, together with their (co)variances.

An example is discussed in Appendix BhL.
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Attention should be focussed finally on the specification of
the linear predictor o, in the GLIM3 programmes. Note that at least
one term in the linear predictor depends on the time variable T.

This implies that we are always dealing with the fit of a piecewise
exponential model. The exponential model (i.e. constant hazard in the
entire interval [aO,aL)) would be fitted if the linear-predictor did not
include the factor T (cfr. Section 2.2). If T is the only term in the
linear predictor (i.e. if covariates REL, EDU and COH are not taken into
account), the model will be referred to as the mull model. The $FIT-
statement for the null model is thus simply $FIT T. 1In order to obtain
the GLIM3 expression for the linear predictor in PH models, i1t should be

noted that (2.33) can be rewritten as

log u(ts;z) = o, + BZ

which shows that there is a term depending merely on the time covariate and
a term depending only on the other covariates. DPH models are therefore

obtainmed through a $FIT—statement of the general form

$FIT T + Z

where 7 stand for terms depending on covariates REL, EDU and/or COH.

For instance, the least restrictive PH model is fitted through $FIT T

+ REL%EDU%COH, i.e. all main effects and interaction effects of the
covariates REL, EDU and COH on the relative risks are-taken into account.
(Details about the #* notation can be found in Baker and Nelder, 1978,
Section 13). If the relative risks would only depend on REL, then the
appropriate statement would be $FIT T + REL. If the relative risks depend
on REL and EDU, but not on COH, then the appropriate statement would be
either $FIT T + REL + EDU or $FIT T + REL%EDU.

The GLIM3 expression for the linear predictor in SPH models

is easily obtained by rewriting (2.24) as

log u(t;z) = aZz1 + B,

Hence, one term includes both the time covariate T and some covariates

corresponding to the stratifying covariate vector 21, and the other term
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includes possibly all covariates REL, EDU and COH. The general form of
the $FIT-statement for SPH models can thus be written as

$FIT TxZ1 + Z

where Z is as before and Z1 stands for the stratifying covariates.

For instance, in the case of a stratification according to religious
affiliation, the $FIT-statement is $FIT REL#T + REL%EDU%COH if within-stratum
relative risks depend on the stratum, or $FIT REL%T + EDU%COH if within-

stratum relative risks do not depend on the stratunm.

The $FIT—statement for parametrized models of the type (2.33)
ig formally that for ordinary PH models. However, as we noted in Section 2.3,
the shift parameters cannot be estimated through maximum likelihood methods.
Therefore, the (possible) shifts should be taken into account a priori by
applying the correct transformation of the time variable T. An example is
found in Appendix B2 : +the shift is 2 years for HIGH-educated women
relative to other ones; the time variable I1é§ adjusted for the shifts in

the data definition part of the programme. The application of more

complex shifts is shown in Appendix B3.

So far we have discussed how the models presented 1n Sectiong
2.2-3 can be fitted by using the GLIM3 computer package. In practice,
of course, the investigator will always have to keep an eye on the following

(closely related) problems
(1°) Which model fits best?

(2°) Is the proportional hazards assumption (with respect to one or

more covariates) appropriate?
(3°) How should the shift parameters be found?

A1l these problems have to do with the selection of a parsimonecus model,
i.e. a model that fits the data adequabely and, at the same time, allows
for (relatively) easy interpretation of its parameters. To face up to

all these problems, we suggest the following'rough strategy :

(a) compare PH models mutually and with SPH models to detect the

covariates which do not act multiplicatively on the hazard;

(b) select the "best" (general) SPH model;
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(¢) corresponding to the "best" SPH model, find the most appropriate

set of shift parameters.

In steps (a) and (b), use should be made of the idea of nested models

(e.g. Baker and Nelder, 1978) and the fact that they can easily be

compared through the use of differences between their respective scaled
deviances (and corresponding numbers of degrees of freedom). (See Appendix
ET for details.) In step (c), several sets of shift parameters should be
compared to see which one gives the best fit. This is a trial and error
procedure. An appropriate initial set, however, may for instance be
obtained by careful examination of graphs of the cumulative distribution

(or survivor) function as:estimated by the best SPH model found in step (b).
The initial set of shift parameters may then be improved step by step.

The final parametrized SPH model should give estimated cumulative distribution
functions (or hazard functions) which are close to the estimates obtained

by fitting the (general) SPH model found in step (b).
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2.5 Numerical applicatiocn

This section (1°) deals with the selection of a parsimoneous
model for the analysis of entry into first union, and (2°) contains a

discussion of the results computed under this model.

A start was made by fTitting the ordinary PH model T + REL + EDU
+ COH. The corresponding GLIM3-programme, together with some results,
can be found in Appendix B1. Note that the formula for this PH model can
be written as
g + B + 8B

u(t32) = ult;z ).e ! 2 3
Note also that the covariates REL (zj), EDU (22) and COH (ZS) do not interact
in thelir effects on the hazard. The goodness—of-fit statistiecs were found
to be ii = 659.93 and Q}% = 693.42 with v = 375 degrees of freedom. The
corresponding p-values are about zero, indicating a significant lack of fit.

Hence the need to improve the simple PH model used.

As a first step in this direction one could add interactions
between covariates to the PH model T + REL + EDU + COH. A number
of such PH models - i.e. "between" the null model T and the least restrictive
PH model T + REL#EDU%COH - could possibly be fitted with an accompanying
analysis of deviance in each case (Appendix ET7) aimed at finding the best
among them. It may however be argued that none of the PH models was able
to provide a good fit. This can be seen for instance by comparing the
observed c.d.f.AE(t;Z) and the c.d.f. %(t;z) as estimated from the PH model
T+ REL + EDU + COH. These c.d.f.'s are shown in Figure C2. Clearly the
fit is inadequate in the case of the HIGH-education subgroups. The fact
that the c.d.f. is overestimated at lower ages, and underestimated at
higher ages indicates that none of the PH models would arrive at providing

an adequate fit.

An alternative method of improving the fit 1s therefore indicated;
and this 18 attempted via the use of a SPH model, i.e. by including
interactions between time and covariates in the above PH model. Following
the reasons given in the previous paragraph it is secen that the most obvious

stratification is that related to the covariate EDU. The goodness—

of~fit statistics for the SPH models EDUx(T + REL + COH) ana EDUxT + REL + COH
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are shown in Table Al. The scaled deviance which measures the difference
between the SPH model EDU%T + REL + COH and the PH model T + REL + EDU + COH
is 28L4.85 with 40 degrees of freedom. This indicates a (highly) significant
improvement. However, the scaled deviance between the SPH models EDUx(T +
REL + COH) and EDU%T + REL + COH is 11.27 with 8 degrees of freedom,

showing that the difference between these models is not significant (at

the 10% level).

Each of these SPH models carries three strata (since EDU has
three categories). The graphs of the estimated c.d.f.'s }(t;z) under the
PH model T + REL + EDU + COH (Figure C2) however indicate that it would
perhaps be sufficient to consider only two strata. A new stratifying co—

variate STR was therefore defined as follows :

il

STR = 1 if EDU
2 EDU = 3

1 or 2

Note that the first stratum is formed of PRI - and SEC - educated women,
while the second stratum contains the HIGH - educated women. Two new
stratified models were then fitted : STR%(T + REL + EDU + COH) and the
more restrictive STR*T + REL + EDU + COH. Their respective goodness~of-fit
statistics are shownrin Table Al. The scaled deviance measuring the dif-
ference between these two SPH models is 5.32 with 4 degrees of freedom,
showing that the more restrictive SPH model STR%T + REL + EDU + COH is not
significantly worse (at the 25% level) than the SPH model STR¥(T + REL +
EDU + COH). The stratification related to the covariate EDU (3 strata) and
that corresponding to the covariate STR (2 strata) can then be compared :
the scaled deviance measuring the difference between the SPH models

EDU%T + REL + COH and STRxT + REL + EDU + COH is 51.97 with 20 degrees of
freedom. This is highly significant (even at the 1% level), indicating
that the model with 3 education strata should be given preference.

However, there is a significant lack of fit, even under the preferred model
EDU%T + REL + COH, the p-values .064T and .009€ (corresponding to the
statistics-%i and ;i respectively) being still too low.

This lack of fit, which may be due to either the absence of

interactions between the covariates EDU, REL and COH or the absence of
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stratifying covariates other than EDU (or eventually STR), seems to indicate
that a more detailed form of stratification is required. (For instance,

the SPH model RELx%EDU%T + COH might be tried.) The number of time parameters
(aZZ ) would however increase fast and this in turn would lessen ease of
interpretation. A prudent way out of these difficulties consisted of para-

metrizing”the SPH models - a process which was outlined in Section 2.3.

On the basis of the above discussion and given the estimates under
the PH model T 4+ REL + EDU + COH as shown in Figure C2, it was decided
to parametrize the SPH model STR¥T + REL + EDU 4+ COH. Figure C2 shows
that HIGH-educated women (STR=2) tend to postpone entry into first union by
about 2 years. Shifts of 1, 2 and 3 years were experimented with, and
the corresponding models are denoted T' + REL + EDU + COH, T" + REL + EDU + COH
and T"' + REL + EDU + COH respectively in the rest of the text. (The GLIM3-
programme for fitting model T" + REL + EDU + COH and the results are shown
in Appendix B2.) The corresponding goodness—of-fit statistics are shown
in Table A1. It(ca? be seen that the 2-years—shift gives the most satis-

11

factory results.

Tt will now be shown that, given the parametrization T", the
log~additive model T" + REL + EDU + COH for the hazards is not significantly
worse than any other model which incorporates interactions between the
covariates REL, EDU and COH. In corder to do this, all models of the type
T" + [terms depending on covariates REL, EDU and/or COH] were fitted.

The corresponding estimated statistics ;i and ;ﬁ with their degrees of
freedom v are listed in Table A2. Any of these models nested in the model

T" + REL + EDU + COH can be compared with it by using the scaled deviance
~2 ~2

X, T Xg,a A
the scaled deviance for the model T" + REL + EDU + COH, with Va degrees

and the corresponding degrees of freedom v-— v, (where ii,A is

of freedom). Similar comparisons can alsc be made between the model

T" + REL + EDU + COH and any model in which it 1s nested. The figures in

the last two columns of Table A2 indicate that the main effects of the
covariates REL, EDU and COH are all important, but that interactions can be
ignored. A more detailed analysis of deviance is represented in Table A3.

In sum, this analysis of deviance table shows that, given the parametrization

T", the model T" + REL + EDU + COH is that which is most satisfactory.
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The c.d.f.'s E’(t;z), estimated under the model T" + REL + EDU + COH,
are shown in Figure C2. Comparison with the PH model T + REL + EDU + COH
shows a clear improvement of fit for HIGH-education subgroups, although the
fits corresponding to some other subgroups suffer somewhat in this process
(the worst affected being the two RC RMA - SEC subgroups). Examination
of the observed and estimated schedules in these subgroups indicates thab
here too women tend to postpone entry into first union. A shift of 1 year
seemed best suited to this case. Further, when the c.d.f.'s for RC RMA
subgroups were compared with those for other subgroups, it was seen that
all Roman Catholic women with regular Mass attendance tend to postpone
entry into first union by about 1 year. The 2-years—shift for HIGH-educated
women (relative to PRI- and SEC-educated women) and the 1-year-shift for
RC RMA women (relative to other women) were consequently combined : the
result is schematically represented in Figure C3 {(panel b). Note that there
are in fact four strata, and that the shift for one stratum relative to
another is either 1, or 2, or 3 years. The notation T* used hereafber will

refer to this particular parametrized stratification.

Tt can be shown that model T* + REL + EDU + COH is the most
satisfactory of all models of the type T* + | terms depending on covariates
REL, EDU and/or COH]. In order to show that the fit obtained in this case
of the model TF + REL + EDU + COH is better than that corresponding to the
model T" + REL + EDU + COH, the estimated c.d.f.'s %(t;z) were plotted in
Figure C2.

No attempt was made to improve the model 7% + REL + EDU + COM
by further stratification (or parametrization) in spite of the lack of fit
in some subgroups. This attitude was adopbed for the following reasons :
(1°) the deficiency of the data used (as discussed in Section 1) did not
warrant further expendition of effort; (2°) the possibility that inclusion
of other covariates and/or redefinition of the covariates used might be
more important had to be faced; and (3°) the fact that the present text is
primarily intended as an introduction to a certain type of methodology.
This section will therefore close with the presentation of some useful

results, obtained under the model T 4 REL + EDU + COH.
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The shift parameters bz and the estimated relative risks exp (é;)
- adjusted for the shifts - are shown in Table Ab. The interpretation of
these parameters is discussed in Section 2.3. Such a table will come in
useful when models of the type (2.33) are fitted. The model considered
here however — i.e. TH + REL + EDU + COH - has the property that the effect
of any particular covariate on the hazard is not altered by changing the
level (or category) of the other covariate(s) : i.e. the covariates REL,
EDU and COH do not interact in their effects on the hazards. The effect
of any particular covariate can therefore be represented as in Table A5.

This table shows that

(1°) the effect of REL consists mainly in bringing about a shift in
the process. RC RMA women are seen merely to postpone entry
into first union by about 1 year : for the rest the (adjusted)
instantaneous risk (i.e. the hazard) of entering first union is

almost the same across the four categories of REL;

(2°) the main effect of COH is to cause a spread of the process
younger women do not tend to postpone entry into first union,
but the instantaneous risk of entering first union is much higher

for them than for older women;

(3°) the effect of EDU is twofold : HIGH-educated women tend to postpone
entry into first union by about 2 years, and the instantanecus risk

of entering first union goes down if the level of education increases.

Table A5 does not give a complete picture of the effects of the
three covariates on the process of entry into first union : the ultimate
proportions c¢(z) play an important role in this respect since they are
the only measures for the (ultimate) level of entry into first union.
Estimates can be found in Table A6 : i.e. the quantities %{a21;z) or the
proportion of women with covariates Z who have entered first union by the
age of 36 years. However, because of the deficiency in the data discussed

(12)

in Section 1, these estimates are not very reliable.

Finally, estimates of the age Me(z) (resp. P10(z)) at which 50%
(resp. 10%) of women with covariates Z who will ever experience first union
have already experienced this event, were computed and are shown in Table AT.

The effect of any particular covariate, as seen through the use of the shift
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parameters and relative risks, can be found in this table too. For instance,
REL has an effect on both P10 and Me : i.e. the whole process is simply
shifted by about 1 year for RC RMA women. The effect of COH on P10 is

small, but its effect on Me is seen to be more important. The same 1s true
for covariate EDU if we considered only the two lower categories of this
covariate, but both P10 and Me suddenly increase by more than 2 years for

HIGH~educated women.
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3. COMPETING RISKS : THE FIRST MARRIAGE/FIRST COHABITATION MODEL

3.1. Mathematical formulation and likelihood construction

‘Let T-be a continuous random variable, representing
the time (i.e. age since 15th birthday) at which a woman enters
either the state of first marriage. or the state -of
first cohabitation, depending on which state she enters first - i.e. T
represents the time at which a woman enters the state of first union as in
Section 2.1. Let C be a discrete random variable representing the specific
state of union she enters first, i.e. either the state of first marriage
(C = 1) or the state of first cohabitation (C = 2). For censored women,
both T and C cannot be observed. With the definitions of Section 1, and
omitting subscript 1 for woman i, we have T = t and C = § for a woman who
experiences first union (8 = 1 or 2) at time t, whereas we only know that
T >+ for a woman who is censored (§ = 0) at time t.

(13)

The cause-specific hazard functions uj(t;z), for women with

characteristics 2z, are defined as

P(t < T < t+at, C=]|T > t,2) (3.1)

p.{t;z) = 1lim
J AL4O At

The quantity uj(t;z).At, with arbitrarily small At, is then interpreted as
the probability that a woman with characteristics z enters the state of

first union due to cause Jj in the time interval [t,t+At), given that she

has not experienced first union before time t. A model which takes count

of the simultanecus presence of many "causes'" of the type under consideration

is in general referred to as a competing risks model.

A distinction should be drawn between the probability of entering
the state of first union due to cause j in [t,t+At) (given that first

union was not experienced before time t) if only risk j is operative in

[t,t+At), and the probability of entering the state of first union due to

cause j in [t,t+At) (given that first union was not experienced before time t)
(1)
lities are assumed (following Makeham and subsequent actuarial practice)

. . 15
to be equal - i.e. equal to uj(tgz)ﬁt; see Gail (1975).( 5)

if all risks are operative in [t,t+At). Note however that these probabi-

It is only
through this assumption that an estimation of the pure distribution of the
time at which either entry into first marriage or entry into first cohabi-

tation occurs, becomes possible. In other words, an estimate of what



-39-

happens to women if they were exposed to only one of the risks is made
possible. With the available data {(Section 1), this assumption cannot

be avoided, though its verification is not possible (Gail, 1975).

If reference is made globally to entry into first union and
not to its constitutive "causes", then we have merely to deal with a
hazard function defined as in formula (2.1). In that case the quantity
u{t;z).At retains the meaning it was given in Section 2, but u(t;z) is
now called the total hazard function (or the total force of decrement
as in Pollard, 1973). If we assume that entry into first union due to
several causes simultaneously is impossible — i.e. that the probability of
entering first marriage and entering first cohabitation at the same time

is zero - than, for an arbitrarily small interval [t,t+At),
u(tsz). a6 = w (£32).46 + uz(t;z).At,

whence

u(tsz) = 2 u.(t;z2). (3.2)
I

Note that the latter formula is valid for any number of causes J = 1).

This last assumption is clearly valid in the present study which
deals with the entry into first union due to one of the two causes marriage
and cohabitation. In cause—specific mortality studies, however, the probabi-
1lity of dying from two or more causes simultanecusly is not always zero.

For instance, one may die from a car accident, because of a heart attack
caused by the car accident. Problems arising from such situations. are
overcome by considering each simultaneous occurence of two or more causes

as a new cause (e.g. Gail, 1975). Thus, formula (3.2) remains quite general.

When the discussion focusses on entry into first union as such
and not on the causes of entry, the total survivor function S(t;z), the
total cumulative hazard function A(t;Z), the total p.d.f. F(t3z), the total
c.d.f. F(t;z), the total ultimate proportion ¢(z) and the total conditional
probability g(t,h;Z) - Just as explained above in the case of the total

hazard function u{t;Z) - have the same meaning as in Section 2. Clearly,

formulae (2.2) to (2.7) continue to be valid.
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Begides the cause-specific hazard functions uj(t;z) as defined
in (3.1) we also have need of the cause-specific survivor function Sj(t;z)

and the cause-specific p.d.f. jﬁ(t;z), defined respectively as

Sj(t;Z) =P(T 2 ¢, C=j|z) (3.3)
~d8.(t32)
and j}(t;z) =—d (3.4)
dat

Thus, Sj(t;Z) is the probability that a woman with covariates z does not
enter into first union before time t and enters into first union due to
cause J after t in the presence of other causes. For arbitrarily small

At, the guantity fﬁ(t;Z).At is interpreted as the probability that a

woman with covariates Z enters into first union due to cause J in the
interval [t,t+At) : i.e. fﬁ(t;z).At is approximately P(t <7 <+t + At,C=j|z).
This probability can also be written as the product S(t;z).uj(t;z)At of the

" all causes of entry into first union till

probability S(t;z) to "survive
time t and the probability uj(t;z}&t to enter into first union in the interval

[t,t+At). It follows then that
f}(t;z) = S(t;z)uj(t;z). (3.5)
From (3.2) it follows immediately that

fltsz) = ? fﬁ(t;2>. (3.6)

If we denote the probability that a woman with covariates z
amasinm:ﬁr%1mhmwhetocmmej:MiMeiMﬁmml[mt)byQﬂtz),

then

~ ot

f.(s;2)ds (3.7)

Qj(tsz) = ;

o

and, by integration of (3.6) over [0,t), we get
F(tiz) = 2 Qj(t;z). (3.8)
d

Following Chiang (1968) and Gail (1975), we call Qj(t;z) the crude proba-

bility of entering into first union due to cause J in [0,t). The adjectif

(16)

erude refers to the presence of all risks.
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Now let cj(z) stand for the crude probability that a woman with

covariates Z ever enters into first union due to cause J : i.e.
cj(z) = P(c=j|z) = Sj(o;z). (3.9)

Then (Appendix ES8)

elz) = X ¢.(z) (3.10)
] Jd

and we have then subsequently

5(t;z)

1 - F(t32)

1 -ez)+2 ¢.(2) -2 @.(t;2)
j J 3 d

1-c(z) +Z (cj(Z) - Qj(taz))-

J
Since (Appendix E8)
S Atz) = c (Z) - @.{ts2 11
J(,) J()QJ(,} (3.11)
we have the relation
S(t3z) =1 -¢(z) + 2 sj(t;z). (3.12)
J
If ¢(z) = 1 (i.e. if the event of entering intoc first union is universal

for women with covariates Z; see Section 2.1), then equation (3.12)

becomes

5(t3z) = Z8.(t;2)
] dJ

which is similar to equations (3.2) and (3.6). It should be noted that

oo

c. = (t3z) at = Q. (=32),
J(Z> (f) f’J( z) QJ( z)
whence, using (3.11),

S.(wyz) = O.

J

Since the process corresponding to a cause J is not necessarily universal,

the last result implies that the cause-specific survivor function Sj(t;z)
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is only analogically true to its name. It cannot be interpreted univocally

as the survivor function corresponding to cause jJ.

The crude probability Qj(t;Z) as defined in (3.7) is an uncondi-
tional crude probability. The conditional crude probability of entering
into first union due to cause J in an interval [t,t+h), given first union

has not been experienced before time t, is, for women with covariates Z,

B s(s52)u.(s32)
q.(t,h;z) = { J ds (3.13a)
J é S(t;z)
b+ o (o)
= J ds (3.13}})
i 5(t;z)
Q. (t+h;z) - @.(t;2)
- o J , (3.13c)
S(t;z)
§.(t3z) - 5. (t+h;2)
_ 53 J . (3.134d)

S(t;2)

Note that Qj(t;z} = qj(O,t;Z).
Further with (3.2) {(or (3.6), (3.8) or (3.12)) it is easy to
derive the following relation between the total conditional probability

q(t,h;Z) and the crude conditional probabilities q(t,h;Z)

q(t,n32) = 2 g, (t,n;2). (3.14)
J
Besides the total functions and the cause—specific functions
defined above, use can also be made of pseudo functions. The pseudo
cumulative hasard function is defined as
%

Aj(t;Z) = J uj(s;Z)ds (3-415)
O

and the pseudo survivor function is defined as

6;(t32) = exp (-A;(t52)). (3.16)
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Since, for small At, the quantity uj(t;z).ét is approximately
the conditional probability of entering into first union due to cause j

if only rigk j is operative in interval [t,t+At) - i.e. due to the Makeham

assumption - the pseudo functions describe the distribution of entry into

first union due to cause J after elimination of all other risks. In other
words, if women were only exposed to risk j. Thus the pseudo functions
describe the distribution of the pure process of entry into first union
due to a specified cause j. If gj(t;z) is the pseudo p.d.f., defined as

_“& .
gjﬁt,z) 3t Gj(t,z), then

g:-(t3z2) = G.(t3z).u.(t;2) (3.17)
J J J
and gj(t;z).At is, for small At, approximately the unconditional probability
of entry into first union due to cause j in [t,t+At) for women with covariates

Z if they are only exposed to the risk j.

Using (3.2), we can easily derive the relations

At;z) = Z A (t32) (3.18)
F
and
S(t3z) = T G.(t3z). (3.19)
j 9

There is no such simple relation between the total p.d.f. f(t;z) and the
pseudo p.d.T.'s gj(t;z).

‘ Using cause-specific functions we have defined the crude probabi-
lities cj(z), Qj(t;Z) and qj(t,hgz). Similarly, using pseudo functions we
can define net probabilities. The adjectif net refers to the presence of

(17)

only one risk, J say.

The net probability, Q(j)(t;z) say, that a woman with covariates 2
enters into first union due to cause j in the interval [0,t) (in the absence

of all other risks) is
t

Q(j)(t;Z) = J gj(s;z)ds, (3.20)

e}
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The net probability, ﬂj(Z), that a woman with covariates Z ever enters into

first union due to cause ] (in the absence of all other risks) is
m.l2) = .{t;z)dt = . wiZ). .21
(@) = [ gyt = g (=32 (3.21)
)

The conditional net probability, q(j)(t,hgz), that a woman with covariates z
enters into first union due to cause j in the interval [t,t+h), given that
she has not experienced first union due to cause J (in the absence of all

other risks), is

UG (s32).(s32)
q(j)(t,hsz) = J d d ds (3.22a)
i Gj(tgz)
f+h g.(s;2)
= J - s (3.22Db)
i Gj(t;z}

Q(j)(t+h52) - Q(j)(t;z)

= (3.22¢)
G.(t3;Z)
J
G.(t;2) - G.(t+h;Z)
= —d 2 (3.224)
Gj(t;Z)
= 1 - exp (‘(Aj(t+h;z)—Aj(t;Z))) (3.22e)

dGh(t;Z) : dQ(j)(t;z)

1 (s = - , G.{0; = 1 d 003 = 0,
Using gJ(t,z) GJ( z) an Q(J)( z)

dat dt

Q . 1,‘2 - ‘] - (.]'. b'Z - 3023

Note that there is no simple relation between net probabilities and the
corresponding total probabilities. Relations between crude and net proba-—
bilities will be derived later on, under special model assumptions (see

(Sections 3.2 - 3).
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The likelihood for the (unknown) exact individual data (1.3) (taking
into account the cause of entering into first union) can now be constructed.
With this end in view consider - as in Section 2.1 - the contribution to
this likelihood for each woman i. The contribution of a woman i who enters
into first union due to cause j (Si = j) at time s is S(ti;zi).uj(ti;zi);
the contribution of & woman i who iIs censored (éi = 0) at time ts is S(ti;zi).

In order to arrive at a general expression for the contribution of a woman i,

we need to define indicator variables Ij (j = 1,...d) as follows :

Ij(éi) = 1 if 8, = 3
0 if & #J. (3.24)

The contribution of woman i is then
Ij(ﬁi)
32 ) . At.sZ.
S(6352) 1, (5432,))
J
If it is assumed, as usual, that the individual experiences of women are
independent, and if the mechanisms of entering into the state of first
union and of censoring are independent (Lawless, 1982), then the likelihood
for the (unknown) exact individual data (1.3) is proportional to
1.(8.)

) . joi
1{s(ti,zi). g(“j(ti’zi)) 1. (3.25)

o
[}
=]

i
As in Section (2.1), this likelihood can be rewritten as

1.(s8.)
L= 11 T (8(t.:2) Myp.(t.52.)) 9 1 1. (3.26)
ze % ieR(0,2) . ij Tt

Since it is clear that reference to covariates Z may be dropped from the
notation as long as the discussion does not concern them explicitly, we will
(for the present) concentrate on the likelihood

T.(8.)

L= 1 (S(t.). m(u.(t.)) 3 11, (3.27)
ieRo) * A

or on the corresponding log-likelihood

log £ = f'{ ? [Ij(§i).log uj(ti)] + log S(ti)} (3.28a)
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= f { ?[I»j(ﬁi)-lOg uj{ti}] - Al )} (3.28b)
= z:{ ?‘[Ij(@i).log uj(ti) - Aj(ti)] }. (3.28¢)

3.2. Piecewise exponential models and competing risks

As in Section 2.2, consider a partition [ao,a1}, {a1,a2), .....
[aL_1,aL), with ao=O and az—az_1=1. Explanatory details concerning this
partition as well as details about the piecewise exponential models discussed

below are found in Section 2.2.

The Tormulation of a piecewise exponential model in the presence
of competing risks follows the procedure outlined earlier when the simple
piecewise exponential model (with only one risk in operation) was presented
(see Section 2.2). Here too (i.e. in a competing risks model) it is assumed
that each cause-specific hazard uj(t) is constant in each interval {az_1,az).
Thus

p.(t) = e for a, . <t <Iaz. (3.29)

The model (3.29) has already been discussed by Chiang (1968, Ch. 11,
Section 3) and is referred to by Laird and Olivier (1981).

Model (3.29) allows for different cause-specific hazards corres-—
ponding to different causes of entry into first union. A special case of
interest is obbained from the general model by assuming that the cause-
specific hazards corresponding to two causes j and k (say) are equal (i.e.
that ajZ = o
then we get the model

for all 7 = 1,....L). If this happens for each pair of causes,

= = .
uj(t) e for a;_ t <a (3.30)
where az = a1z= eree =0

Under model (3.29), and using (3.2), the total hazard u(t) can be

written as
o,
w(t) = Ze 3t gor a,_, <t <a,. (3.31)
J
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Thus, piecewise constant cause-specific hazards pj(t) imply a pilecewise
constant total hazard p(t). Note that under the special model (3.30) the
total hazard is

= <
u(t) = J.e for a_, 1 <iaz. (3.32)

Each pseudo cumulative hazard‘Aj(t) can be written as

A{g) = Z e F 4 e At-a,

) for a, <t<g (3.33)
J §<1 L Z

=1
under the model (3.29). The total cumulative hazard A(t) is then, using
(3.18), equal to
a. o,
M) =1 2 e Ko JZ.(t—az_

L2 )} for a;_ <t <:QZ' (3.34)
J

Under the special model (3.30) we get

o

a
Kye Z.(t-az_

Aty =J.{0 2 e (3.35)

)} for ¢; St <a
k<l

1 1 L*

Substitution of (3.29) and (3.33) (or (3.34)) in (3.28c) (or in
(3.28b)) and reorganisation of the terms involved gives us the following

expression for the log-likelihood :
3, (3.36)

where de is the number of women entering into first union due to cause ]
in the I-th time interval [aZ-1’aZ}’ and EZ is the total exact exposure
time in the I-th interval. Note that the exposure time EZ is independent
of the causes Jj, and that de = X I.(&i).

:'Le:‘ﬁZ

Under the special model (3.30), the log-likelihood becomes

o
log £ = ?‘{dz.az - J.E e Z}, (3.37)

where dZ is the number of women entering first union (irrespective of the

cause to which this is due) in the Z-th interval, i.e. dZ = X de' Note
. . . d ¢

the difference between the log-likelihoods (2.16) and (3.37) “which are
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alike in many respects. They are both log-likelihoods under models which
ignore the cause of entry into first union. However, in order to test
whether or not the cause of entering into first union can be ignored,

a comparison has to be made between the maximized values of the log-
likelihoods in (3.36) and (3.37) - e.g. through the log-likelihood ratio
statistic (gi). The maximized value of the log-likelihood in (2.16) cannot

be used for that purpose.

The log-likelihood (3.36) is the log-likelihood for the exact
individual data (1.3) under the piecewise exponential competing risks model
(3.29). &ince the exact individual data are usually unknown, the exact
exposure times EZ cannot be computed. Thereforif proceeding as in Section 2.2,
the exposure times E, are approximated by some E; (see (2.18a-b)) and the
log-likelihood
G.g

log £ =2 % {a. - %, .e Y

32 Jl'ajl 7 } (3.38)

is then derived. This is thus the log-likelihood for the observed individual

data (1.2) or for the grouped data (1.4) (ignoring covariates Zz).

Reintroducing covariates Z, we have

o.
~ 1z
logl= Z_ X Z{d., .a., -E _.e 9%} (3.39)
. z
ZE%.J 7 jlz"7jlz A
where dez is the number of women with covariates Z entering the state of

first union due to cause j in the l-th time interval, EZZ is an approximation
for the total exposure time EZZ in the l-th interval for women with covariates
Z, and the ajZZ are defined through

o

ui(t52) = e itz

<t <a,. Lo
for a; , St <a (3.40)
Equation (3.40) is in fact the general piecewise exponential competing

risks model for the data (1.2) or (1.4) involving covariates Z.

From (3.39) we can see that cause of entering first union can
be treated in the same way as the other covariates ZysenenZ With the

intention of moving in that direction in mind, let 2o be a covariate
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. . X
taking on values j; let Z* ve equal to (=z "2 s ) = (Z’Zm+1) and &

120"

] je{1,....d}}; let dzz* be

m+1

be equal to {Z*[Z% = (2,2 ), zeE, =

equal to d.,_ if z* = (z,j) and E )
ilz ZZ*
).  Then the log-likelihood (3.38) may be written as

m+1

~ . *
be equal to E, if z" = (z,zm+1

(for any value of 2o

%

log L= 2 Z{d 4o ,-F ,.e 27y (3.41)
27eE L 128 1z 1z
This has the same form as (2.20) which implies that the competing risks
problem can, at least from a formal point of view, be treated as a problem
involving only one (combined) cause of entering first union. This conclusion

will be used in Section 3.k,

We now present some useful formulse for
crude, net and total probabilities of entering first union aueAtg a
specified cause in a specified time interval, given that first union has
not been experienced before the beginning of that interval. The formulae
presented below do not make reference to covariates Z. The derivation of

formulae which incorporate Z explicitly is left to the reader.

Under the pilecewise exponential competing risks model (3.29),
the crude probability qu of entering first union due to cause j in the

I-th interval [az_1, az), given first union has not been experienced before

time a;_, is, from (3.13), -y eajZ
aji 1-ed
a5y = qj(az_1,1) =e v, N ; (3.h2)
e it
J
the net probability q;)1 is, from (3.22),
( ) i (3.13)
. = . . = 1 - H .
Uiz = U5 -1 © 343

and the total probability q, is, from (3.14) and (3.42),
-3 eajz
a; = qla;_;,1) =1-¢e (3.4k)

(The proof of formulae (3.42) to (3.44) is given in Appendix E9.)
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a.
If we denote the j-th cause-sgpecific hazard (e JZ) for the
.
l-th interval and the total hazard (Z e JZ) for the 7-th interval respec-
J
tively by Mg and W, , we can then rewrite (3.42-LL) as
~u
1 -e L
Q7 = Wy~ ° (3.k2a)
"1
—u,
A
a5y =1 e I (3.L43a)
-u,
and q,=1-¢e ". (3.4ha)

(Some approximate formulae are discussed in Appendix E10.)

From (3.L2a-lka) we also get the relations

u.
- .t
q.
_ it
a; "1
and A5y = 1 - e . (3.46)

If Py is the total probability to "survive" the I-th interval in the
presence of all risks, given Tirst union was not experienced before

a,_;» and if P51 is, similarly, the net (or pure) probability, then we

have also the following formulae :

-,
p, =e =1-q (3.47)
= enpj'Z = 1 -
P 951 (3.18)
U,
Y _ y
a7 el (1 pz) (3.49)

Q(j)g =1- Py oo (3.50)
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For the unconditional crude, net and total probabilities, defined in (3.7),

(3.23) and (2.5) or (3.8), we can find the following commonly used formulae :

sz = QJ(GZ) =QJ-1 +p1«qj2 + o +p1. cevn .pz_j.qu (3.51)

Uiz = Unta) =9y PGy T PGy e P =19 ()1
(3.52)

QZ = F(az) =Gyt PGy T oeeees D0 wel Dy G- (3.53)

The solubion of the system of maximum likelihood equations, obtained
by equating to zero the partial derivatives of log £ in (3.39) with respect
to the parameters STPE yields the following estimate for the hazards in (3.40).

- o a.
u.(t;z) = e iz = :%zz"' for a

< <az,v (3.54)
E
1z

1-1

Thus, under the piecewise exponential competing risks model, the J-th cause-
specific hazard in the I-th interval, and for subgroup Z, is estimated by
the occurence—exposure rate a; Zz/gzz' It follows from (3.2) and (3.54) that
the total hazard in the I-th interval, and for subgroup Z, is estimated by

_ t:9) =3 4., /5. = o~ . .
the occurence—exposure rate u(t;z) : dJZZ/EZZ dZZ/EZZ’ which is exactly

d
the same occurence-exposure rate as obtained in Section 2.2 - formula (2.22).

Under the special model (3.30) we get - when covariates z are taken

into considersation — the estimates

fi.(t;2) = == for a; , <t <az. (3.55)

Note that the estimate of the total hazard u(t;z) is the same under model

~

(3.30) as under model (3.29), i.e. T(t:Z) = p{t;2z).
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We have not discussed the exponential model in the presence of
competing risks in this section. In such a model the cause-specific hazards
would be constant over the entire interval [ao,az)ﬁ :This model could be
of special interest in a number-of applications. (e.g. if the entire interval
la ,az) is short). The appropriate formulae however can easily be cbtained

from the formulae given in this section.
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3.3 Proporticnal hagzards models in the presence of competing risks

In Section 2.3 we saw how the general (piecewise exponential)
model for the analysis of age of entry into first union can substantially
be simplified by assuming that the hazards are proportional (i.e. model
(2.23)). sSimilar assumpbtions can be made under the competing risks model.
In this section we will see how the ideas of proportional hazards and of

stratification can be adopted in the competing risks model.

Under the competing risks model (Sections 3.1-2) we have to deal
in general with the total hazards u(t;Z)} and a number of cause—specific
hazards uj{t;z). One or more of the following assumptions could be made in

their regard.

), for any two subgroups

(I) The ratio of the teotal h&zardS”p(t;Z1) and u(t;Zg

Z. and Z,, is constant over the entire interval [ao,aL) : briefly,

1
for any 7z, and Z55 p(tgz])/u(tgz ) does not depend on time t.

1 2
(II) The ratio of the cause-specific hazards uj(t;Z

(t32,

;) end uJ(t, o)
for any two subgroups Z1 and 22, and for any specified cause J is
constant over the entire interval [ao,aL) : briefly, for any z.5 2,

and j, uj(t;z1)/pj(t;22) does not depend on time t.

(III) The ratio of the cause-specific hazards uj~(t;z) and,uj (t;z), for
any two causes j1 and jg, and for each subéroup Z, is cgnstant over

the entire interval [ao,a ) : briefly, for any ji’ j2 and Z,

L
uj (t;z)/pj (t;2) does not depend on time t.
1 2

As in Section 2.3 we can once again consider a reference subgroup Z_.
In the same strain, we can also speak of a reference cause jo.

The assumptions T, II and III may then be formalized as follows.

8
(1) ul(tsz) = u(t;zo).e 2 for all z.
T,
(11) uj(t;z) = uj(t;zo).e 4% for all z and j.
Yz )
(111) uj(t;z) = 1 (t:z).e for allz and J.

O

Wote that for the reference subgroup Z, the parameters BZ and sz
o] o

(j=1,...J) are zero, and that for the reference cause jo the parameters

‘YJ.OZ (zef) are zero.
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Assumption I 1s clearly equivalent to the PH model (2.23) - the
only difference is that the explicit reference to the piecewise constancy

of hazards found in (2.23) is absent in the formulation of I.

Under assumption I an arbitrary subgroup Z can be compared with
the reference subgroup z using the single relative risk exp (BZ).
Under assumption IT an arbitrary subgroup Z can be compared with the
reference subgroup Zo using anyone of the relative risks exp (sz), J=1,...d =
these relative risks exp (sz) will be referred to as the cause-specific
relative risks for subgroup z. Assumption ITI implies that the relative
risk exp (sz
arbitrary cause j with the reference cause jo : this relative risk exp (y

) can be used for the comparison — in subgroup Z - of an

)

Jjz
will be referred to as the subgroup-specific relative vrisk for cause j.

The idea of a reference subgroup has been found to be convenient
in PH models. The idea of a reference cause may be less convenient, and can,

if necessary, be avoided as follows. We have

u(t;z) =2 u (t3;2) (by (3.2))
Jtoat
Yj'Z
=(Ze ) u. (£32) (by III),
g Jo
whence
1
po (t3z) = —— ult;2),
i Yirg
ze
j'
and Y.
e 972
uj(t;z) == u(ts;z) (vby III).
S |
e z
jl
sz Yj'Z
If we define parameters sz to be equal to e “7/(Z e ), then an

J 1
alternative formalization of assumption IITI is

(TII") uj(t;Z) = u(t;2).86.

iz for all Z and J.

This implies that, in a specified subgroup 2z, an arbitrary cause ]
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can be compared with the totality of causes using the parameter 6. ,
The parsmeters ejz (which are in substance relative risks) satisfy the

relation X2 ejz=1 : they will be referred to as the subgroup-specific weights.
dJ

There is, in general, no specific relation between any two of the
assumptions I, IT and III. For instance, proportionality of total hazards
(i.e. I) does not necessarily imply proportionality of cause-specific
hazards (i.e. II), and the converse is also not true in general. However,

we can demonstrate the following inmteresting properties.

(4) If II and IIT are satisfied simultaneously, then I is satisfied and

exp (82) is the weighted average ? ejz . exp (sz) of the cause-specific

o
relative risks exp (sz) (j=1,...J).
(B) If II is satisfied, and if the cause-specific relative risks exp (sz)
for subgroup Z do not depend on cause j - i.e. T._=1_ for all j=1,...J -

. JZ Z
then I is satisfied and exp (Bz) is equal to exp (TZ).
Properties A and B are proved in Appendix E11. In Section 2 we discussed
PH models and used them in connection with total hazards, i.e. we dealt with

(18)

models for which assumption I holds. We prefer 1o work here too - i.e.
in the presence of competing risks - with models for which I holds.
Properties A and B provide us with two conditions related to cause-specific
hazards which give rise to proportionality of total hazards. It is therefore

useful to discuss them in detall.

If IT and III are satisfied simultaneously, we can write ;

oty
iz iz,
p.(t3z) = u. (t3z ).e s
J d %
o
or
sz+Tjoz
u.{t3z) = u. (t;z ).e ,
| J o
o
or
K.Z
p.{t;z) = u. (t;zo).e J (3.56)
J 3o
.= . + . = .
where AJZ TJZ YJZO YJZ + Tjoz.

Under the assumption of piecewise constant hazards (Section 3.2), eguation

(3.56) can be written as
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u.(t3z) = e “.e j for a,_. <4 <3az. (3.57)
where exp (az) (Z=1,....L) is a series of hazards for cause jo in subgroup z, -
This series may be called a base-line hazard. Equation (3.57) is a general
formula for the model incorporating the piecewise exponential competing
risks model and the assumptions II and ITI. Extending the terminology used
in Section 2.3, we can say that there is (1°) no interaction between time t
and cause j, (2°) no interaction between time t and covariates z, but that
there is {39) interaction between cause J and covariates Z. The parameter
exp (ljz) in {3.57) is therefore a relative risk which can be used for the
comparison of cause J in subgroup Z with the reference cause jo in the
reference subgroup Zo‘ Such comparisons however do not seem to be of much
use in practice : the investigator will not be particularly interested in

the relative risks exp (A._) as such, but in the cause-specific relative

jz
risks exp (sz) for subgroup Z, and in the subgroup-specific relative risks

exp (yv..) for cause j. Fortunately, it is easy to compubte both the cause-

JZ
specific and the subgroup-specific relative risks from the relative risks

exp (A._). Indeed, we have

JZ
T., Ajzk AjZ
e Jf = e /e
Yiz o Az Ajoz
and e = e /e

e}

(3.58a)

(3.58Db)

Further, the following expressions for ejz and exp (BZ) are also easlly

found
A A
0. =e 2/(Zed P, (3.58¢)
Jz sy
J
8, Nz Nz
and e = (Ze )/(Ze ). (3.584)
J J
If II holds with sz =T, then we have the equation
tz
uj(t;Z) = uj(t;zo).e . (3.59)

Under the piecewise exponential model, this leads to the model formula

a, T,
p.(t3z) = e 9%.e for a;_; <t <:az, (3.60)
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where exp (mjz) (I=1,....L) is a series of hazards for cause j in the
reference subgroup z . The series exp (ajz) (I=1,...L) will be called
the j-th cause-specific base-line hazard. Here too we can say that there
is (1°) no interaction between time t and covariates z, (2°) no interaction
between cause j and covariates Z, but that there is (3°) interaction

between time t and cause j.

So far we have discussed two classes of models : i.e. those
corresponding to the (general) model formulae (3.57) and (3.60).
The intersection of these two classes is however not empty. ‘Models belonging
simultaneously to each of the two classes (3.57) and (3.60) are formalized
through equation (3.61).

uj(t;Z) = e .e j.e z for a;_, < g <:az. (3.61)

In other words, under model (3.61), assumptions II and III are satisfied,
wlith sz = TZ.

Other classes of models are obtained by assuming that either II,
or III, or III with sz = Yj’ or any combination of these possibilities
holds. Formally, we then get the following classes of models (using the

assumptions of piecewise constant hazards throughout).
- If only III holds, we have

o Y.
o (t;z) =e 2e 9t fora, <t<a (3.62)
d -1 A
where exp (aZz) (I=1,...L) is a series of hazards corresponding to

the reference cause jo in subgroup Z - it will be called a subgroup—

specific base-line hazard.

- If III holds with sz = Yj’ we get the following class of models — i.e.
a subclass of the class represented by (3.62) -

%12 Yj <
pj(tgz) =e e for a;_, St <ay. (3.63)

In this class of models the relative differences between causes 1s the
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same across subgroups, and they are measured in each subgroup by the
same set of relative risks exp (yj) (j=1,...J). Note that under

model (3.63) the weights ejz are also independent of covariates Z.

- If only assumption II holds, then we get the class of models represented
by the formula
ai, o To
p.(t3Z) = e 9%, 9 for a <+t <qg (3.64)
J -1 A
where exp (ujz) (I=1,....L) is a series of hazards corresponding to
the j-th cause in the reference subgroup z - as in model (3.60) it

will be called the j~th cause—specific base-line hazard. Note that
(3.60) is a subclass of class (3.64).

The intersection of classes (3.57) and (3.63) is again class (3.61).
It follows then that under assumptions II and ITI the additional assumptions
T.. = 1_and y._ = v. (or 8. = 8.) are equivalent. These special assumptions
iz = 72 Y52 =5 ( iz J) q P D
are also equivalent to the statement Ajz =1, + Y; (see e.g. (3.58)) - if
IT and IIT hold.

It is useful to note that the different models discussed above
are all piecewise exponential competing risks models, which are generally
represented by the model formula (3.40). A schematic representation of the
general class (3.40), its subclasses, and how the latter are obtained from

the former is found in Figure Ch.

The idea of stratification in relation to proportional hazards
models {sin the absence of competing risks) was introduced in Section 2.3.
From the discussion in that section it follows that a stratified proportional
hazards (SPH) model can be conceived as one which implies an ordinary
proportional hazards (PH) model in each stratum. The same idea can be
adopted here too to sulte the presence of competing risks. The formal
representation of SPH models in the presence of competing risks however tends
to become very complicated since the expression "proportional hazards"
could now stand for a number of different model assumptions - i.e. assumption
I, or II, or III, either separately or in combination, could be taken as

being satisfied. Further the concept of stratification presented earlier
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in this text - i.e. as accounting for the interaction between time and

any specified subset of covariates - should not be used in conjunction

with PH models in which only assumption III (i.e. proportionality with
respect to the causes only) is satisfied. Hence, SPH models in the presence
of competing risks will only be defined as medifications of the PH models
(3.57), (3.60), (3.61) and (3.6L) obta%?§§ by reintroducing interaction

between time and specified covariates.

As in Section 2.3 we will now split the covariate vector Z into

two parts z, and Z, (i.e. z = (21,2 )) where z, = (21,...2 ) is the vector
1

...zm) the vector of the m-m

1 2

of m, stratifying covariates and z, = (z

1 2 m,+1°° 1

1
remaining covariates. If the class of PH models defined by (3.57) is

considered, both assumptions II and III (and hence also I) are seen to hold.
The corresponding SPH models are therefore defined by the equation
+.
4 A

1 92

uj(t;Z) = e for a;_ <t <g

1 7 (3.65)

and it follows that assumptions II and III (and hence I) hold in each

stratum z,. Note that (3.65) can be obtained from (3.57) by reintroducing
interaction between time t and stratifying covariates 21,....Zﬁ .

.. . 1
Similarly, we obtain

o . +T.
, JZZ1 jz _
uj(t;z) =e for a;_, St <1az (3.66)
from (3.6L4);
qsz1+Tz
) = < .
pj(t,z) = e for @, , <t <:az (3.67)
from (3.60); and
aZZ +yj+TZ
L7) = 1 <
uj(t,z) = e for a; , <t <:az (3.68)

from (3.61). Note that there are a variety of different links, both
between the SPH models (3.65), (3.66), (3.67) and (3.68) themselves, and
between these SPH models and the PH models discussed above. For instance,

(3.67) is a subclass of (3.66) obtained by assuming that Tz = Tz(j=1,....J).
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Similarly, (3.68) is a subclass of (3.65) resulting from the assumption that

A., =Y.+ 1. Figure C5 - an extension of Figure C4 - summarizes these

jz J z
links and shows which assumption(s) is (are) needed to get one class from

another.

The use of relative risks for the comparison of different subgroups
in SPH models is equivalent to such comparisons in PH models, with the
added proviso that the two subgroups to be compared should necessarily be

in the same stratum. A complete overview of the possible relative risks for

the classes of models presented in Figure C5 is given in Table AS8.

The comparison of different strata in stratified models - e.g.
through the comparison of the reference subgroups in different strata -
is, in general, not straightforward, since the difference is not measured
by a single (or just a few) parameter(s). However, we have already defined
(in Section 2.3) a parametrized form of stratification as the combination of
(1°) a difference between the starting points of the process in different
strata, and (2°) a proportionality between the hazards corresponding to
different strata once the process has started. The same ideas can be
adopted in the presence of competing risks. Hence, proceeding as in
Section 2.3, the SPH models (3.66), (3.67), (3.65) and (3.68) can be para-
metrized respectively as follows - ignoring the assumption of piecewlse
constant hazards (if as in Section 2.3 Z is a subgroup of stratum Z, and

1
)

Z is the reference subgroup in the reference stratum Z

00 10
T!
) = : jz
uj(t,z) uj(t+bz1, Zoo).e (3.69)
with :
! =
sz wjz1 + sz (3.70a)
for a parametrization of (3.66),
or
1
T., = w. + T (3.70b)

for a parametrization of (3.67);
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1

A
) = . iz
uj(t,Z) My (t+b, 3z ).e (3.71)
o 1
with
' —
sz = o, + }‘jz (3.72a)
"o 1
for a parametrization of (3.65),
or,
’ -
Ajz = wj021 + Y +oT, (3.72p)

for a parametrization of (3.68).

If zZ is the reference subgroup in stratum Z_, then we have

19
the following equations :
wjz1
uj(tszo) = uj(t+bz 32,)-e (3.73)
1

under model (3.69-70a) or (3.69-70b), and

. _ . o 1
ujo(t,zo) = ujo(t+b21’zoo)°e (3.74)

under model (3.71-T2a) or (3.71-72b). These formulae are useful for the
interpretation of the parameters of the model. For instance, the parameters
under model (3.71-3.72a) - i.e. the parametrization of {(3.65) - are used

as follows

{1°) the shift parameter bz indicates that the entrance into first
. 1
union of-women in stratum z, starts bz units ahead of that of
1
women in stratum 210;

(2°) exp (w.
J021

shift - between the entrance into first union due to cause jo

) measures the remaining difference - i.e. after the

in the reference subgroups Z, (in stratum Z,) and Z_ {in

1
stratum 210);
(3°) exp (Ajz) measures the difference between the entrance into

first union due to cause j in subgroup Z (in stratum Z,) with

1
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the entrance into first union due to the reference cause j
o

in the reference subgroup zZ {in stratum 21).

As before relative risks exp (X.,) are taken to be of very limited use.

jz
In practice, these parameters may be replaced by the cause-specific

relative risks exp (1.,) and the subgroup-specific relative risks exp (y

j2 iz
which are defined in (3.58a) and (3.58b) respectively. Note however that

h | ] . .
the relative risks exp (waoz1), exp (TJZ

investégator will be interested - can all be derived from the relative risks

) and exp (sz) — in which the

exp (Agz) by the formulae

1
Y5 2z A5 2
1
e ©'l=e °°, (3.75a)
PON
sz jz jzo ,
e =e Je . (3.75b)
A Al
Yiz Jz jOZ
e =e Je . (3.75¢)

A Al
0. =e 9%/(Zed 9, (3.574)
JZ 3
) by
B AL jz
e?=(Zedf)/(Ze ). (3.75¢)
J dJ

Formulae (3.T75a~e) are also valid under the model (3.71-72b),
but here sz does not depend on j, while sz and sz do not depend on Z

(Note also that Yiz and ejz do not depend on the stratum z, of which Z

is a subgroup). Similar formulae can also be found under model (3.69-70a)
or {3.69-70b). A complete overview of the shift parameters and relative
risks (if they exist) under the four parametrized SPH models is given in

Table AQ.
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The log-likelihoods under any of the models discussed in this
section are obtained from the general formula (3.39) if the parameters
ajZZ are replaced by the appropriate expression. As in Section 2.3,
the following remarks concerning the estimation of the parameters of the
models are in order. Firstly, the system of maximum likelihood eguations
has, in general, to be solved iteratively. Secondly, the shift parameters
cannot be estimated by this method; the remaining parameters can be estimated

only if the shift parameters are fixed.

Finally, we give some useful relations between total, cause-specific
and pseudo-functions, and between total, crude and net probabilities.
Al these relations can easily be found from the appropriate relation for

the hazard functions and from the formulae in Sections 3.1-2.

Under assumption III, we get the following relations between cause-

specific and total functions (or between crude and total probabilities)

fj(t;z) = ejz.f(t;z), (3.76a)
Qj(t;z) = ejZ.E’(t;z), (3.76b)
cj(z) = ajz.c(z), (3.76c)
qj(t,hgz) = ejz.q(t,h;z); (3.764)

and between pseudo— and total functions (or between net and total

probabilities)
Aj(t;z) = ejZ.AEt;Z), (3.77a)
e'z
G:(t32) = (5(t52)) J (3.77b)

8.
q(5y(8m52) = 1 = (1 - q(t,n52)) Iz (3.77¢)
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Under assumption II, we get (as in ordinary (S)PH models - see Section 2.3)

T.
jz
G, (832) = (6;(1;2.))° (3.78a)
T.z
A (652) = A(652 ) e 3 (3.78b)
sz
q(j)(t,h;z) =1- (1= q(j)(t,h;zo))e (3.78¢)

If both II and III hold, then we get for instance

B.. .e Jz
JZ
Gj(tgz) = (S(t;z)) ° (3.79)
T.z
A.(t;z) = e.z e d .A(t;zo), (3.79b)
J iz,
. e jz
Jz
q(j)(t,h;z) =1~ (1~ q(t,h;zo)) (3.79¢)

The appropriate formulae for the parametrized SPH models can easgily be

obtained from the above formulae (cfr. Section 2.3).



- G

3.4 Estimation of the parameters in competing risks models through GLIM

In this section we will discuss how the (log-) likelihoods
under various competing risks models can be maximized through the GLIM3
computer package. As in Section 2.4 the following two remarks should be
kept in mind : proper estimation of the shift parameters is not possible,
and the log-likelihood of any competing risks model is a special case of
the log-likelihood in equation (3.39). Our attention will therefore be
focussed on the general likelihood (3.39).

As in Section 2.4, a GLM with a log-likelihood differing from
log £ in (3.39) at most by a constant term needs to be constructed.

The appropriate GLM is defined as follows :

(1°) the dependent variables (i.e. the counts deZ (j=1,...0;ze&;1=1,...L))
are assumed to be statistically independent and Poisson distributed
with means Msz say (The counts dez thus have a Poisson error

structure);

(2°} the covariates consist of a time covariate - with levels.l=1,...L -,
the covariates Z, and a cause covariate — with levels j=1,...J.

The linear predictor is denoted by quZ;

(3°) The link between the linear predictor asz

is given by :

and the mean MjZZ of

the dependent variable dsz

log M. + a. (3.80)

jlz =

P~

where B/ is the corresponding (approximate) exposure time.

The likelihood under this GLM is proportional to

-M.

d.
L=n1T M.%iz.e jtz (3.81)
gzl J
o .
o~ 1z
wdes d.a_.a -E,_.e 9
=N EZZJZZ.e jtz*"jiz iz ) (3.82)
jzl
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Taking logarithms we get

= - - Q.
log £= 222 (4, B+ d., e, - Itz

og e (a log E,, dJZZ %517 E,,-€ ) (3.83)
which, apart from a constant term, is equal to log £ in (3.39). Hence,
estimates of the parameters &jZZ in competing risks models can be found by
fitting the above GLM. In other words, we can still use GLIM3 in order to

it the competing risks models developped in Sections 3.2-3.

A GLIM3-programme for fitting competing risks models which
specify cause of entry into first union has the same basic structure as
a GLIM3-programme for fitting models in which no reference is made to
cause of entry. However, there are some important modifications. We shall

discuss these now, using the GLIM3-programme in Appendix B5.

To start with, note that the GLIM3-programme 1n Appendix BS5 produces
a fit for a parametrized SPH model of the form (3.71-T2a). As mentionned
before, however, shift parameters cannot be properly estimated. They are
therefore fixed in advance, and the time variable (T) is adjusted for the
shifts. Leaving aside this difficulty related to shifts, which can now be
ignored in what follows, the model takes the form (3.57).

We have already argued in Section 3.2 that cause of entering first

union (i.e. j) can be treated in the same way as the covariates z 4

oo
see the derivation of formula (3.41) from (3.39). There are 2 ca&ses to be
dealt with in the applications found in this text. They are taken count of
through a dichotomeous covariate TYPE which has been defined in the data
definition part of the programme. Since each uwnit in GLIM is a particular
combination of the covariates j, Z and 7, the total number of units is
now doubled (i.e. from 402 to 80L). The data are stored initially in
vectors BT, N, D1, D2, W, REL, EDU and COH - which are all of length LO2.
However, since D1 and D2 correspond to different units (or jZl combinations),
the initially formed veetors BT, N, D1, D2, W, REL EDU and COH are
transformed into vectors T, LE, D, TYPE, ZR, ZE and ZC - which are all of
length 804. The latter vectors can be described as follows

T = the number corresponding to a time (or age) interval;

TYPE = the cause of entering first union;
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ZR = the religious category;

ZE = the education category;
ZC = the birth-cohort;
D = the number of women with covariates ZR, ZE and ZC who enter first

union due to cause [YPE in the T-th interval;
LE = the log-exposure time for the T-th interval and for the women
with covariates ZR, ZE and ZC.

Note that LE does not depend on TYPE. This is as it should be since the

exposure times E?? in (3.39) do not depend on cause j.

At the end of the data definition part, all vectors not used in
the rest of the programme are deleted. This is of practical importance
since the data space used should be reduced as often as possible because

of computer memory space limitations.

The rest of the GLIM3-programme, except the $FIT~statement, is
exactly the same as before (cf. Section 2.4). The specification of the
linear predictor - through the $FIT-statement - is as follows. For competing

risks models of the form (3.57),

(t: - . <+ <

log uJ(t,z) oy + AJZ for a; , <t <ay,

which shows incidentally that the $FIT—statement under models (3.57) has
the general form

$FIT T + ZxTYPE

(Z standing for terms depending on covariates ZR, ZE and/or ZC).
The $FIT-statement for other competing risks models is found in the same way.
The general forms of the $FIT—statement under the various classes of

competing risks models discussed in Section 3.3 are listed in Table A10.

It is interesting to note that models which do not take the
cause of entering first union into account can be fitted as special
competing risks models if the covariate TYPE were omitted from the $FIT-
statement. This allows for scaled deviance tests concerning the difference
between the process of entry into first marriage and the process of entry

into first cohabitation. For instance, the parametrized SPH model fitted
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through the GLIM3-programme in Appendix B3 can be effected through the
GLIM3-programme in Appendix B5 if the $FIT-statement is changed into

$FIT T + ZR + ZE + ZC. The difference between the scaled deviances cor-
responding to $FIT T + ZR + ZE + ZC and $FIT T + TYPEx(ZR + ZE + IC) -
both related to the programme in Appendix BS ~ provides a chi-sgquared
statistic which can be used to test whether the process of entering first
marriage is (significantly) different from the process of entering first
cohabitation. (See Appendix ET7.) The scaled deviance obtained through the

programme in Appendix B3 cannot be used for such a test.

Similarly, the scaled deviances can be used to test the PH
assumption ITT (Section 3.3). For instance, the difference between the

scaled deviances corresponding to the fits

$FIT T + TYPEx(ZR + ZE + ZC) and
$FIT TxTYPE + TYPEx(ZR + ZE + ZC)

provides a chi-squared statistic for testing the assumption III introduced

earlier in Section 3.3.(20)

As in Section 2.k, it is very important to select a parsimoneous

competing risks model. The same questions raised in Section 2.4 are relevant
here too given that the cause covariate TYPE can be treated Just like the
other covariates. The strategy to be followed here too is similar to that
followed in Section 2.4. However since the class of possible models is

large it is best to follow relevant indications resulting from a prior
cause-independent analysis of entry into first union. In other words, it

may happen that stratification (with respect to covariates) and its parametri-
zation is most conveniently effected as in the analysis of first union as
such. Thus, the model used for the parsimoneous analysis of first union as
such is at least a good starting point for the selection of a parsimoneous
competing risks model. This procedure has been used in the operations

described in the next section.
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3.5 Numerical application

This section presents the results obtained from the application
of a model of the type discussed in Sections 3.1-k. A detailed discussion
of both the selection of the model and the results obtained from fitting
it to the first marriage/first cohabitation data is not given here.

The reader is referred to Willems and Vanderhoeft (1985) for more details.
The main purpose of the following paragraphs is to indicate how the investi-
gator should handle the basic results in order to transform these into a

more usable form.

The model finally used in the analysis is specified by the GLIM3
expression for its linear predictor : T* + {ZR + ZE + ZC)%TYPE. The notation
T*t refers to the shifts of the time variable I for one stratum relative to
an other : the (four) strata and the corresponding shifts are the same as
those used in the application of the relevant models to data on first union
as such (Section 2.5). 1In fact, the present model T* + (ZR + ZE + ZC)*TYPE
is closely related to the model T 4 REL + EDU + COH for analysis of first
union as such : (1°) the strata and the shifts are exactly the same, and
(2°) the action of the covariates REL, EDU and COH (here : ZR, ZE and ZC
respectively) on the cause-specific hazards is analogously the same as
there action on the total hazard of entry into first union - i.e. the co-
variates do not interact in their effects on the cause-specific hazards.
The covariate TYPE - to be introduced in the competing risks model (Section
3.4) so as to distinguish the two causes of entry into first union - could
be incorporated in the medel in several ways. The resulting competing

risks models are denoted as follows
T* + (ZR + ZE + ZC) + TYPE,
T*&TYPE + (ZR + ZE + ZC),
TX4TYPE + (ZR + ZE + ZC)XTYPE,
and the model mentionned above :
T* + (ZR + ZE + ZC)xTYPE.

Each of these models can be regarded as being representative of one of the
classes of SPH models shown (in boxes) in Figure C5 : i.e. the four models
above belong to the classes (3.68), (3.67), (3.66) and (3.65) respectively.
An analysis of deviance gives a Tirst idea about the most suitable class

of (parametric) SPH models. A model belonging to the class (3.65) was
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found to be the best in this regard. The final choice thus falls on the
above mentionned model T + (ZR + ZE + ZC)%TYPE (which can be described
by the formulae (3.71-72a)). Note that the scaled deviance for this model
is 680.47 with TW7 degrees of freedom, indicating a fairly good fit.

The basic results - i.e. the linear parameters as they are
estimated by application of a GLIM3 programme - are shown in Appendix BS.
Using the formulae of Section 3.3 - i.e. the formula used in connection
with the model (3.71-T2a) - these parameter estimates can easily be trans—
formed into other parameters more suitable for discussion.

N (21)

To start with, the relative risks exp (Ajz) were computed

are presented in Table A11. Since these relative risks compare an arbitrary

and

cause J in an arbitrary subgroup Z with the reference cause jo (here : jo=1

~ first marriage) in the reference subgroup z, (here ZO=(1,1,1) ~ RC RMA -

PRI - 48-62), after adjusting for the difference in the starting points of
the corresponding processes, 1t ig not easy to use them in a discussion

of the differences found between first marriage and first cohabitation or
found between subgroups. It has however been argued earlier that they can

be transformed into subgroup-specific relative risks (for the comparison

of causes) and cause-specific relative risks (for the comparison of subgroups)

- ¢f, Section 3.3.

The subgroup-specific relative risks exp (§jz) are shown in
Table A12. They measure the difference between first cohabitation and
first marriage in any specified subgroup Z. How the covariates under
consideration act on the relative difference between first marriage and
first cohabitation can thus be seen. Alternatively, the subgroup—~specific
welghts 5jz can be used. These guantities clearly show how the proportion
of entry into first marriage (j=1) or first cohabitation (j=2) varies

with covariates Z.

The cause-specific relative risks exp (;jz) are shown in Table A13.
Note that these quantities are in fact relative risks located within
strata : they show how the process of entry into first marriage or the
process of entry into first cohabitation taking place in a subgroup Z

located in a specified stratum differs from that occuring in the reference
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subgroup in the same stratum. (The four relevant strata are represented
in Figure C3.) A table of within-stratum relative risks exp (éz} (Table
A1lk) can be constructed in similar fashion : they measure the difference
between the process of entry into first union according to a subgroup 2

and the reference subgroup ZO in the same stratum.

The comparison of separate strata can be made on the basis of
the parameters shown in Table A15, i.e. the shift parameters bz and the

relative risks exp (@j ). In fact, these parameters - partic&larly the

021

relative risks exp (@. ) - enables one to compare the process of entry

J. Z
into first union due tg ;arriage (i.e. the reference cause jo) in different
reference subgroups. (Note however that the shift parameters are valid for
all subgroups.) In order to compare the process of entry into first

union due to a specified cause, in two arbitrary subgroups in two separate

strata, one should combine the relative risks exp (mj 7 } with the corres-—
o 1
ponding cause-specific and subgroup-specific relative risks.

The comparison of the process of entry into first union due to
a specified cause in different subgroups - either in the same stratum or in
separate strata - shows the effects of the covariates REL, EDU and COH.
Since the model used here - i.e. T* + (ZR + ZE + ZC)*TYPE - is additive
in these covariates, their effects can be summarized as in Table A16.
The relative risks in Table A16 measure the relative spread of the process
of entry into first union due to either marriage or cohabitation, after
adjustments for shifts have already been effected. Note that the relative
risks corresponding to first marriage are different from those corresponding
to first cchabitation, this being a consequence of the interaction between
the cause covariate (TYPE) and the other covariates (ZR, ZE, ZC). A table
representing the covariate effects on the total hazard, such as Table A3,
could also be constructed under the model T™ + (ZR + ZE + ZC)%TYPE.
The relative risks would be very close to the relative risks in Table AS5.
They are not exactly equal, since the model T* + (ZR + ZE + ZC)%TYPE 1is
more restrictive than the model T* + ZR + ZE + ZC (or, in the notations of
Section 2.5, T & REL + EDU + COH) : in the former model the assumptions
I, IT and IITI hold (in each stratum), whereas in the latter model only the

assumption I holds (in each stratum).
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We have also constructed a table of first deciles P10j(z} and
medians Méj(z) (Table A17). These parameters can be defined as follows.
The median Mej(z) (first decile PTOj(Z)) is the age at which 50% (10%)
of the women with covariates 2z who will ever experience first union due

to cause J, if only cause ] would exist, have already experienced this

event. Méj(z), for instance, is the median age of entry into first union
due to cause j if this phenomenon were to be observed in its pure form
(Henry, 1959). Since the cause~specific hazard uj(tgz) is assumed to
describe the phencomenon of entrance into first union due to cause J in

its pure form, the estimation of Mej(z) and PTOj(Z) is only based on this
hazard uj(tgz), and the mathematical procedure is equivalent to the problem
outlined in Appendix E6. (In formula (E6.8) one has to replace F(a ;2) by
the pseudo c.d.f. G (a 3Z) 5 A(az 1,Z) by the pseudo cumulative hazard

Aj( Z_1,2) and UZZ by the cause-specific hazard UjZZ')

Finally, note that the description of the process of entry into
first union due to either msrriage or cohabitation is not as yet complete,
since nothing has been said so far about the ultimate proportions of women
who will ever make a cause-specified entry into first union. Estimates of
these ultimate proportions were not given because of one of the data
deficiencies already signalled in Section 1 - i.e. the exclusion of 469 never
married women because of an error in the questionnaire. For the same
reason, a table of conditional probabllltles g . Z(Z} (or q( )Z{Z)) and of
cumulative probabilities 3. (az,z) (or Q( )( Z: Z)) was also omitted.

The estimated crude cumulatlve probabilities Qj(azgz) have been plotted

in Figure C6 together with the corresponding observed crude cumulative
probabilities merely to show that the fit of the model T* 4 TYPE%(ZR + ZE + ZC)
ig fairly good.
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L. CONCLUDING REMARKS

The PH model and other models closely related to it have been
used in the work comnnected with the present text to study the entrance
into first union - either due to marriage or to unmarried cohabitation -
of Flemish women who were born between 1938 and 1962. It was found that
ordinary PH models do not fit the data adequately. The reason for this
unsatisfactory fit was seen to be linked to the postponement of entrance

into first union in the case of women with certain characteristics.

The following socio—economic and demographic determinants were

used in this study

(1°) religious affiliation (grouped into four categories, ranging from

Roman Catholics with regular Mass attendance to freethinkers),

(2°) highest educational level attained (grouped into 3 categories

primary, secundary and higher educated women ) ,

(3°) birth cohort {(grouped intc two broad categories : those born before

or in 1947 and those born after 19LT).

It was found that the starting point of the process of entry into first
union is affected by both religious affiliation and educational level
attained : Roman Catholics with regular Mass attendance tend to postpone
entry into first union by about 1 year, and higher educated women tend

to postpone it by about 2 years. If the duration varisble - i.e. the time
since the 15th birthday (see Section 1) is adjusted in view of these
differences in starting points, then the effects of the above soclo-
economic and demographic determinants can further be accounted for through
an ordinary PH model. In such a model, categories of women whose process
of entry into first union can be seen as having different starting points
are considered to form different strata. The model can then be described

as a SPH model.

The crdinary PH model can be seen as a log-linear model for
contingency tables — a result that is partially obtained by the piecewise
exponential approach (Sections 2.2-3.2). Terms on the right hand side
of the equation characterising such a model depend either on time or on the socio-
economico-demographic determinants used, but not on both time and these

determinants together. A SPH model is easily obtained by introducing
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terms depending on time and the other determinants simultaneously - i.e.

by introducing interaction between time and these determinants. The general
SPH model defined in this manner does not yield an estimation (through
maximum likelihood techniques) of the amounts by which the process of

entry into first union is shifted in moving from one stratum to another.
However it does allow for the specification and inclusion of the optimum
form of stratification suitable for the case in hand. Once an opbimum
stratification is found, the amounts by which the process has to be shifted
in moving from one stratum to another can be estimated much more easily -
for instance by visual inspection of observed and/or estimated schedules

and comparison of them across strata.

The results of the analysis of first union as such have been
put to further use in the analysis of cause specified first union.
It was found that the particular stratification (and shifts) used in
connection with first union as such was suitable for the cause-specific

analysis too.

Technically, the cause of entering first union has been handled
(by us) in the same way as the socio-economic and demographic determinants
used. It was consequently easy to check whether or not the hazard of
entry into first marriage and the hazard of entry into first (unmarried)
cohabitation are proportiocnal. It was found that they were in fact
proportional. (If they were not, an examination of whether or not the
process of first marriage starts later/earlier than the process of first
(unmarried) cohabitation - depending perhaps on socio—economic and demo-

graphic characteristics - could be made.)

The methods used in this study are essentially related to
multivariate multistate models. ZExtensions of the present methcdelogy
can readily be envisaged. Analyses of different kinds (e.g. analysis
of entering into first union, analysis of termination of first union,
analysis of remarriage, ....) which are usually done separately, could
be done simultanecusly : with consequent ease of comparison. Application
of PH assumptions in such extended multistate analysis would advantageously
allow for the comparison of different processes through the use of just

a few parameters.
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In more complex multistate analyses the importance of time
dependent determinants will increase rapidly. The likelihood methods
used in this study will then no longer be applicable as such. Suitable
partial likelihood inference methods will consequently have to be dealt
with. The GLIM3 oriented estimation techniques will then be unfortunstely

more difficult and less attractive for the user.

One of the important disadvantages of the methods presented in
this paper consists of the fact that the range of shift suitable for any
given process cannot be estimated by maximum likelihood techniques.
This problem could be avoided by using parametric models instead of the
semi-parametric models used in this text. Studies planned for the near
future will examine how the semi-parametric methods used above could be
replaced by others which are fully parametric. In this context note that
such parametric PH methods would be very close to the Coale-McNeil nuptiality
model (Coale and McNeil, 1972). Our own parametrized form of the SPH model
ig also, in point of fact, very close to the Coale—MeNeil model : both
these models carry a shift parameter (b in one case, ag in the other), a speed
parameter (relative risks as opposed to k) and the ultimate proportion
(¢ in both models). Certain differences however need to be underlined.
The Coale~McNeil model is (leaving aside the shift parameter ao) an
accelerated failure time model (Vanderhoeft, 1983). Hence, the interpretation
of relative risks on the one hand and the speed parameter k on the other,
is not the same : relati?e risks are multiplicative modifications of the
hazard, whereas k is a multiplicative modification of the time variable

itself.

Another disadvantage of the maximum likelihood methods used
(in relation to general SPH models) is that the number of nulsance parameters
(i.e. the base-line hazards needed) might become too large, entailing a
consequent loss in efficiency (of the maximum likelihood estimates).
This problem would perhaps be solved either by eliminating the nuisance
parameters through partial likelihood techniques or by introducing
suitable shift parameters. Note however that the strata to be used in

both these cases should be known in advance.
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Footnotes

(1)

(5)

Time-censoring is also referred to as Type I censoring, see e.g.
Lawless (1982). Because of this type of censoring, the observed
individual data (1.2) - which is merely subject to random censoring
(Lawless, 1982) — and the grouped data (1.L4) are not equivalent,

in the sense that (1.2) contains more information than (1.4).

In other words, the likelihood for (1.2) and the likelihood for (1.4)
with =21 are not proportional. However, the difference is small since,
as mentionned before, the number of women exposed to risk at exact

age 36 1s small compared to the total sample size. Any bias resulting
from the time-censoring in question is therefore small and may be
ignored in the steps leading from the likelihood for the individual
data (1.2) to the likelihood for the time-censored grouped data (1.4)
{with L=21) - see Section 2.1.

The contribution to the likelihood of subgroups Z for which no woman

is cobserved is 1.

We do not here specify the endpoint ar of the L~th interval. This end-
point a can be either a time (or age) limit beyond which the event
studied does not occur —~ as is cusbomary in actuarial practice - or any
other fixed (finite) timepoint. Moreover, the number of intervals [
can be finite or infinite. Later on, we take both L andAaL, to be

finite.

To avoid technical problems in estimating the parameters as, we will
work — in practice — with a finite number of intervals I {(of unit
length). (Otherwise, we would have an infinite number of parameters
a, (Z=1,...4=)). Similarly, ig the last interval was {qL_1,+m),
then, with a constant hazard e L, we would have A{®)=w or e=5(«)=1,

except if a, is equal to -». This too would cause computational problems.

L

Note however that we don't need to specify L (or a,.) in theoretical

L
discussions.

For this and other assumptions see e.g. Holford (1976) and Menken
et al (1981). ©Note that for the very fast interval (L=21) considered

in the applications later on the censoring of the W, women is uniform



(6)

(9)

(10)
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over the interval, but n -wonen are censored at exact time a

12 %1792 I’

see Section 1 and footnote (1) for details.

It may be shown that the shift parameter bz does not depend on the
1
choice of the reference subgroups. Whence the notation. The relative

risks exp (w, ), on the contrary, depend on the choice of the reference

24

subgroups. However, we do not make reference to this in our notations.

The parameters exp (BZ) will - whenever it is necessary — be referred

to as within—stratum relative risks.

GLIM3 is developed by the Numerical Algorithms Group (NAG). One should
not read this text without having the GLIM3-manual (Raker and Nelder,
1978) at hand.

From equation (2.38) we can derive the equation

M2
log —= = Oy

Ess

The expression "log-linear model in relation to rates' refers to the
occurence—exposure rates MZZ/EZZ and the corresponding linear
predictors ay, = i.e. the linear combinations of the covariates

z
(or dummies representing these covariates) involved.

Any shift parameter bz used has in fact been measured as being equal
1
to an integral number of years. In general the shifts could be

measured in fractions of one year. Then, however, the length of the
intervals [az_1,az) would have to correspond to these fractions.

Note that, in order to use GLIM3 and to fit parametrized SPH-models,
{19} 811 the intervals [aZ-W’aZ) need to have the same length (taken

as a unit and called a unit-length), and (2°) the shifts bz should be
1
measured in terms of this unit. This unit-length can thus be for

instance 1 year, or 1 semesbter (% year), or 1 month (%% year), etc.
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(12)

(14)
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The models T' + REL + EDU + COH, T" + REL + EDU + COH ana

T" + REL + EDU + COH are not nested (Baker and Nelder, 1978).

They can therefore not be compared Xi% the differences between
their respective scaled deviances and corresponding degrees of
freedom. Comparisons can however be made through their respective

p-values, or through their respective mean deviances Qi/v.

Given that the ultimate proportion ¢(z) is defined as follows

e(z) = 1im F(t;z),
Trw -

-~

and since F(t;z) increases with time t, the quantity F(a ) with

yZ
finite a; - would normally underestimate the ultimate priportion e(z).
The data used however are not fully representative of the Flemish
female population, since 469 never married women have in fact been
excluded from the analysis. This causes %(aL;Z) to be an overestimate

of the parameter ¢(z) : see the high values 'ﬁ(aL;Z) in Table A6.

The terminology used by Lawless (1982) is adopted : thus terms like
cause-specific hazard, p.d.f., .... and pseudo cumulative hazard,...

will be used.

If only risk § is operative in [t ,t+At) means that there is only a
chance of entering the state of first union in {t;t+At) due to cause J.
Similarly, ¢f all risks are operative iwn [t,t+At) means that the chance
of entering the state of first union in [t,t+At) due to any specified
cause could be influenced by the presence of other causes. Further,

we use the terms cause and risk as in Chiang (1968, p. 243). TI.e. the
condition of first union is referred to as cause after the time of
entering first union, but is called risk before the time of entering

first union.

This assumption is also adopted implicitly by Chiang (1968) where he
defines a net probability 4 (p. 246), and by Pollard (1973) where
he defines a related single—decrement table {p. 15, lines L-5).
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In the terminology of Pollard (1973), Qj(tiz) is a dependent probability.

d
Note that fﬁ(t;z) = EE-Qj(t;Z). Thus, we could call Qj(t;Z) a cause—
specific c.d.f.. However, we believe that the term crude (or dependent)

is more suitable when reference is made to the presence of all risks.

In the terminology of Pollard (1973), net probabilities would be

called Zndependent probabilities.

The final model used in connection with data on age of entry into first
union was a SPH model in which the stratification was parametrized

through simple shifts. As explained earlier in the text, the general

SPH model implies a PH model in each stratum (see Section 2.3).

Moreover its parametrized version allows us to avoid a direct consideration
of the shifts (or stratification) if the discussion were to focus on

the relative risks. Therefore, we can discuss the proportionality of
(total and/or cause-specific) hazards in the presence of competing risks

in terms of the ordinary PH model.

In more extended analyses stratification according to causes could
be defined in a similar way. Consider for instance the following
schema, representing the transitions to be dealt with in our analysis

of the beginning and termination of first union.

Married » Divorced
1,1,1
( s ! ) (2"]’2)
Y
Single — » Withdrawn Separated
b /
2 2
Cohabitation » Married
(2,2,2)

The transitions could be coded by a three—dimensional vector j = (j1,j2,j3)

as indicated in the above schema. The "stratification" according to j1
would then for example be equivalent to the assumption that the hazards

corresponding to the transitions into first union are proportional and
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that likewise the hazards corresponding to the transitions out of

- first. union are proportional. Further, the "stratification" according

to j1 and 32 would be equivalent to the assumption that the hazards
corresponding to the transitions into first union are proportional,

that the hazards corresponding to the transitions out of first marriage

are proporticnal, and that the hazards corresponding to the transitions

out of first cohabitation are proportional. Note that the coding of
the transitions depends con the stratifications to be examined. More
complex schemas may be considered. In fact, any multidimensional schema

may be treated by the same methods.

This test is conditional on the stratification (according to covariates
ZR and ZE) and its parametrized form, and on the additive structure
used with the covariates ZR, ZE and ZC - i.e. ZR + ZE + ZC. An uncon-
ditional test concerning the effect of TYPE on the time parameters
congists of the comparison of the scaled deviances corresponding to

the fits

$FIT  TRZRxZExZC + TYPExZRxZExZC

and  $FIT  TxZRxZExZCxTYPE,

where T is not adjusted Tor a shift. Note that this is merely a
goodness—of-fit test for the former model, since the latter denotes
the saturated model.

Fach relative risk exp (ijz) was treated separately in order to
facilitate the construction of the GLIM3-macro PADE (Appendix D)
which had to be used for the computation of the parameter estimabe
and its standard errors. Hence, no covariances were estimated for

the relative risks exp (X ). The same procedure is followed for

gz
the other parameters discussed in the rest of Section 3.5.
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Table Al. Goodness-of-fit of a PH model and various SPH models for data on

first union.

Model

X1, Xp v
T + REL + EDUC + COH 659.93 693.42 375
EDU # T + REL + COH 375.08 398, 64 335
EDU % (T + REL + COH) 363.81 378.92 327

s S - - "] " D o o o " ] s 200 1ty T . " " - -

STR ¥ T + REL + EDU + COH L27.05 h39.97 355
STR % (T + REL + EDU + COH)  421.73 Lho7.15 351

- - - — - _ 7] D Ak T e s o - - -

T' + REL + EDU + COH 521.81 551.42 37h

T" + REL + EDU + COH 459.82 L76.60 373

T" + REL + EDU + COH L83.02 503.87 372

T® 4 REL + EDU + COM 410.3%  M3.60 372
Legend : ii = estimated likelihood ratio chi-squared statistic

= estimated Pearson chi-squared statistic

v = degrees of freedom



Table A2. Chi-squared statistics, with corresponding degrees of freedom, after
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fitting SPH models wherein the stratification is parametrized as a

2-years~shift for the HIGH-education group relative to the other ones.

~r

~2

difference between a model with likelihood ratio chi-squared

statistic QE, and the model T" + REL + EDU + COH, if the two

Qi—ii Al = likelihood ratio chi-squared statistic corresponding to the
,
models are nested.
lv*uA] = the corresponding degrees of freedom.

~ : models are not nested.

Model XL, Xp v ]XL—XL,A{{v—vA]
™ 687.86 T771.09 379 228.0kL 6
T" + REL 609.30 691.73 376 149.48 3
T" + EDU 628.33 658.79 377 168.51 L
™ + COH 6£09.94 £89.00 378 150.12 5
T" + REL + EDU 551.35 579.50 37h 91.53 1
T" + REL + COH 550. 40 627.16 375 90.58 2
T" + EDU + COH 512.23 534.62 376 52,41 3
T" + REL + EDU + COH §§’A=u59.82 L76.60 v,=3T3 - -
T" + REL % EDU 539.39 561.01 368 ~ ~
T" + REL % COH 545,31 620.64 372 ~ ~
T" + EDU % COH 504.10 520.94 374 ~ ~
T" + REL % EDU + COH Lu8. 1k 459,47 367 11.68 6
T" + REL % COH + EDU 455,23 470.20 370 L.59 3
T" + EDU % COH + REL L5277 463. 8L 371 7.05 2
T" + REL % EDU + REL % COH bk 67 455.78 36 15.15 9
T" + REL % EDU + EDU % COH Lh2.36 LL48.59 365 17.46 8
T" + REL % COH + EDU % COH - hh7.99 457.39 368 11.83 5
T" + REL % EDU + REL % COH + EDU ¥ COH  L38.70 LhL.68 362 21.12 11
T" + REL % EDU % COH 434,95 141,09 356 2h.87 17
Legend : Qi, §§ and v : see Table Al.
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Table A3. Analysis of deviance table for SPH models wherein the stratification

is parametrized as a Z2-years-shift for the HIGH-education group relative

to the other ones.

Degrees Mean
Source of deviation Effects controlled for Deviance of Deviance

freedom (a)
REL ™ 78.56 26.19
EDU ™ 59.53 2 29.77
COH ™ 77.92 1 77.92
REL T" + EDU + COH 52.41 3 17.47
EDU T" + REL + COH 90.58 2 L5, 29
COH T" + REL + EDU 91.53 1 91.53
REL T + EDU % COH 51.33 3 17.11
EDU T" + REL % COH 90.08 2 Ls.0h
COH T" + REL % EDU 91.25 1 91.25
REL % EDU 7 11.68 6 1.95
REL % COH - main effects L.59 3 1.53
EDU % COH ) 7.05 2 3.52
REL % EDU T main effects and 9.29 6 1.55
REL % COH - other 2-way 1.01 3 .3k
EDU % COH J interactions 5.97 2 2.99
all 2-way interactions main effects 21.12 11 1.92
3-way interaction main effects and all 3.75 6 .63

2-way interactions

all interactions main effects 2L .87 17 1.46

(a) The mean deviance is the deviance per degree of freedom.
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Table Al. Shift parameters bz and estimated relative risks exp (Bé), together with

their standard errors, under the model T* 4+ REL + EDU + COH.

(a) (b)

Relative risk Shift
(standard error) (in years)
COH
EDU REL 48-62 38-47
PRI RC RMA 1. L6637 0
(.028L4)
RC IRMA L9743 .6L66 -1
(.0L69) (.0k453)
NRA 1.1167 LTk -1
(.0862) (.0680)
FREE L9721 .6L51 -1
(.086k) (.0657)
SEC RC RMA L6192 4109 0
(.0325) (.0306)
RC IRMA .6033 .Loou -1
(.0Lk36) (.0375)
NRA .6915 .4589 -1
(.0640) (.0503)
FREE .6019 .3995 -1
(.0618) (.ok72)
HIGH RC RMA .5738 .3808 +2
(.0370) (.0323)
RC IRMA .5590 .3710 +1
(.ok75) (.0389)
NRA .6408 .Les3 +1
(.0658) (.050T7)
FREE .5578 .3702 +1
(.0590) (.0bL52)

(a) Relative to subgroup RC RMA-PRI-38-47; see footnote (18). Standard errors were
calculated using the GLIM3-macros which are shown in Appendix B4 and D.

(b) Shift parameters b_ are relative to subgroup RC RMA-PRI. A negative (positive)
shift parameter b_ indicates that women in subgroup Z experience entry into first
union earlier (la%er) than women in the reference subgroup.
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Table A5. Covariate effects under the model T* + REL + EDU + COH.

(a) (a)

Relative risk Shift
(standard error)
REL RC RMA 1. 0
RC IRMA .9743 -1
(.0Lk69)
NRA 1.1167 -1
(.0862)
FREE L9721 -
(.0864)
EDU PRI 1. 0
SEC .6192 0
(.0325)
HIGH .5738 2
(.0370)
COH 48-62 1. 0]
38-47 L6637 0
(.028L4)

(a) Relative to the first category of the covariate.
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Table A6. Estimated (°) versus observed (~) conditional probabilities (qz(z))

and cumulative probabilities (F(az;z)) of entry into first union, per

subgroup.
SUBGROUP Z RC RMA — PRI -~ 48-&2
INDEX ENDPOINT OBSERVED ESTIMATED OBSERVED ESTIMATED
INTERVAL AGE COND. PROB. COND. PROB. CUM. PROB. CUM. PROB.
INTERVAL ENTERING ENTERING ENTERING ENTERING
15T UNION 18T UNIONM 1ST UNION 1ST UNION
e g e Fepp) | Hepn
1 i16. 0. Q000 . 0016 0. 0000 G016
3 18. 0345 0217 . 0345 0285
& 21. 3448 3129 . b611 4937
11 26. - . 5844 - 2893
16 31. - . 3824 - 9?0
21 36. - . 0002 - FeR7
SUBGROUP 2z . RC RMA — PRI ~ 38-47
1 16 0. Q000 . 0011 0. 0000 0011
3 18 . 0366 . 0144 . 0366 0190
& 21 . 1994 2205 . 2927 3635
i1 24 . 3750 4416 . 9390 9508
16 31 . 3333 2737 . @756 . 7897
21 36 0. 0000 0001 . 9878 . 7956
SUBGROUP Z : RC RMA -~ SEC -~ 48-62
1 14. 0. Q000 . 0010 0. 0000 0010
3 i8. 0097 0135 . 0144 0178
6 21. 2754 2074 4317 3439
i1 26. 3056 . 4194 2434 9398
ié6 31. 0. 0000 . 2980 2830 9860
21 36. - . 0001 - 9936
SUBGROUP Z : RC RMA - SEC -~ 3B-47
1 16. 0. 0000 . 0007 0. Q000 0007
3 18, 0. 0000 . 0090 0. 0000 0118
& 21. . 1444 . 1429 2111 2440
i1 26. . 4524 . 3029 g722 8451
16 31. L2222 L1797 2611 2410
21 36. 0. 8000 . 0001 9778 4651
SUBGROUWP Z : RC RMA — HIGH — 48-62
0. 0000 0000 0000 . 0000
0. 0000 0009 0000 . 0009
. 0600 0451 04662 . 0609
3333 3749 8040 .B135
3000 . 2099 P571 .9710
t 2416 —- . 9897
SUBGROUP RMA ~ HIGH - 38-47
0. 0000 0000 0. 0000 . 0000
0. 0000 00046 0. 0000 . 0004
. 0141 0302 0141 . 0408
2414 2677 6901 . 6720
2500 1448 21335 . 9045
5000 1677 9718 . 2320
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SUBGROUP 4 : RC IRMA - PRI — 48-42

INDEX ENDPOINT OBSERVED ESTIMATED OBSERVED ESTIMATED
INTERVAL AGE COND. PROB. COND. PROB. CUM. PROB. CUM. PROB.
INTERVAL ENTERING ENTERING ENTERING ENTERING

15T UNION 18T UNION  1ST UNION 15T UNION

mmmmm Larb o am g Magz) Flag;z)

i 14. . 0040 0053 0. 0000 . 0053

3 i8. 1445 . 0754 . 1887 . 0997

& 21. CATLA . 429 7711 . 7125

11 26, . 23500 . 5071 Q739 . 9941

16 3%, - . 1989 — . 9990

21 3&. - . 0001 - . 9994
SUBGROUP Z : RC IRMA - PRI - 38-47

1 14 . 0170 . 0035 Q. 0000 . 0035

3 18 0819 . 08507 . 0909 . 0673

& =21 . 2804 . 3218 . 5455 . 9628

i1 2& . 2727 . 3747 L9375 . Q667

146 31 O. 0000 . 13469 . 9602 . 9899

21 36 . 0000 . 0001 9714 . 9949

SUBGROUP Z : RC IRMA — SEC ~ 48-462

1 ié . 0014 . 0033 0. 0000 . 0033

3 i8. . Q379 . 0474 L0472 . 0630

& 21 . 2979 . 3039 . B121 . 9379

i1 248, . 34467 , 3547 . 9535 . 9582

ié6 31 . 16467 . 1283 . 9811 . 9863

21 36 - 0001 -~ . 9927

SUBGROUP £ RC IRMA — SEC ~ 38-47

1 16, 0. 0000 . 0022 0. 0000 . 0022

3 i8. L0159 L0317 .0159 . Q422

& =21. . 2554 . 2137 . 3&94 . 4009

11 26. . 3529 . 2523 . 9299 . 8784

14 31. 07469 . 0871 . 24618 . 9421

21 36. 0. 0000 . 0001 . 9809 . 9620
QUBGROUP Z : RC IRMA — HIGH — 48B-4&42

1 14 0. 0000 0000 0. 0000 0000

3 18 0043 0030 L0085 Q039

& 21. . 0673 . 1038 . 1048 . 15469

i1 2&. . 2857 - L3364 . 8821 . 8708

14 31. . 5000 . 1252 . 2804 . 9722

21 36 - 1028 - . 98946
SUBGROUP Z : RC IRMA -~ HIGH -~ 3847

1 14 0. 0000 0000 Q. 0000 0000

3 18 0156 Q020 L0154 0026

& =21 Q317 0701 . 0469 1071

11 2& 1905 2382 . 7344 7426

16 31 3333 0850 Q375 Q072

21 34 (. Q000 0624 96837 @517
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SUBGROUP z : NRA - PRI ~ 48-462

INDEX ENDPOINT OBSERVED ESTIMATED OBSERVED ESTIMATED
INTERVAL AGE COND. PROB. COND. PROB. CUM. PROB. CUM. PROB.
INTERVAL ENTERING ENTERING ENTERING ENTERING

1ST UNION 1ST UNION 18T UNION 1ST UNION

_____ Poooars gl qlm Flegsn) Fagse)
i 14, 0. Q000 Q&0 0. 0000 Q060

3 18. 1250 0859 . 1250 . 1134

& 21. &250 4884 . 8750 . 7604

il 2b. - 55855 — L9972

14 31. - 2245 — . 9994

21 36. - 0002 o . 9999

SUBGROUP 2 : NRA - PRI - 38-47

1 14, Q. 0000 . 0040 0. 0000 . 0040
3 18. G. 0000 . 0579 0. 0000 . 07468
& 21. . 4000 . 3592 . 6000 Lbl2e
11 26, 0. 0000 . 4162 . 9333 . 9798
1é& 31. 0. Q000 . 1592 . 2333 . 2949
21 34. 0. 0000 . 0001 . 9333 . 9976
SUBGROUP 2z NRA ~ BEC - 48--6&2
1 i&. . 00995 . 0037 0. 0000 . 0037
3 18. . 0588 . 0541 . 0762 . 0718
& 21, . 2951 . 3378 . 3810 . 9872
11 26. Y -Y-Y-¥4 . 3948 . 9581 . 9737
16 31. - . 1456 - : . 9927
21 36. - . 0001 - . 9965
SUBGROUP z : NRA ~ SEC -~ 38-47
1 14 0. 0000 0023 0. 0000 o023
3 18 0426 0363 . 0B16 0483
& 21 1282 2409 . 3061 4441
11 26 . 2857 . 2834 . 8980 . 2107
16 31 0. 0000 . Q972 . 2592 . 92618
21 36 0. 0000 . 0001 . 392 . 9764
SUBGROUP z : NRA& - HIGH ~ 48-62
1 16 0. 0000 0000 0. 0000 . 0000
3 18. 0. 0000 . 0035 0. 0000 . 0045
& 21. . 1728 . 1180 . 2608 . 1777
i1 26. . 4000 . 3750 . ?190 . 2042
16 31. - . 1422 - . 9835
21 a6. - . 1149 - . 9947
SUBGROUP 2 NR&A - HMIGH -~ 38-47
i 14 0. Q000 0000 0. 0000 . 0000
3 18. 0. 0000 0023 0. 0000 . 0030
& 21. . 1000 0799 . 1000 . 1218
i1 26. L3333 2680 . 8000 . 7872
146 31. - 0968 - . 9344
21 36 - 0792 - . 2690
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SUBGROUP Z : FREE ~ PRI - 48-42

INDEX ENDPOINT QBSERVED ESTIMATED 0OBSERVED ESTIMATED
INTERVAL AGE COND. PROB. COND. PROE. CUM. PROB. CUM. PROB.
INTERVAL ENTERING ENTERING ENTERING ENTERING

18T UNION 18T UNION 18T UNION 15T UNION

z az+15 qz(z) qz(z) F(az;z) F{az;z)
i 14. 0. 0000 Q053 0. 0000 0053
3 i8. 2308 0752 . 2308 o995
& 21. 7500 4422 L2231 7117
11 264, - 50463 - . 2940
1& 31. - 1985 - . 2990
21 3é&. - 0001 - . 2996
SUBGROUFP 2 FREE - PRI -~ 38-47
1 16 Q. 0000 0035 Q. 00Q0 0035
3 18 0833 0506 . 0833 D672
& 21 5714 3212 . 7900 5620
11 26 - 3740 - QE6ELD
14 31 - 136646 - 9898
21 3& -~ 0001 - 348
SUBGROUF 2z : FREE - SEC -~ 48-42
i 16 0. 0000 0033 0. 0000 0033
3 i8 05564 Q473 . 0893 0628
& 21 2933 3033 . 32095 5371
i1 2&6 3000 3541 . 9490 8579
1é 31. 0. 0000 . 1280 . 2690 2862
21 3é&. - . 0001 - Q927
SUBGROURP 2 FREE - SEC -~ 38-47
i 16. Q. 0000 . 0022 0. 0000 0022
3 19. Q. 0000 . 03146 . 0370 0422
& 21. 1205 . 2133 . 3704 4002
i1 =26&. Q. 0000 . 2518 . 94630 8778
16 31, Q. 0000 . 0869 . &30 9417
21 364. - . 0001 - Q&17
SUBRGROUP 2z : FREE ~ HIGH — 48-&62
i 16 0. 0000 0000 0. 0000 . QOO0
3 i8 Q. 0000 0030 0. G000 . 0039
& 21 1188 1035 L1521 . 15646
i1 26 2308 3358 . 7hH&4 . 8702
16 31 - 1250 -_ L9719
21 3& - 1026 - . 7895
SUBGROUP Z FREE ~ HIGH - 38-47
1 16 0. 0000 0000 Q. 0000 . 0000
3 ig 0. 0000 0020 G. 0000 . 0026
& 21 1000 Q700 . 1000 . 1069
11 26 5000 2378 . 8300 7421
16 31 Q. Q000 0848 9000 067
21 3& Q. 00006 0693 2500 9514
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Table AT. Estimated first decile P10(z) and median Me(z) under the model
*
T+ REL + EDU + COH.(a)

COH

P10(2z) Me(z) P10(2Z) Me(z)

PRI RC RMA 18.9 21.0 19.2 21.6
RC IRMA 18.0 20. 1 18.3 20.6

NRA 17.8 19.8 18.2 20.4

FREE 18.0 20.1 18.3 20.6

SEC RC RMA 19.3 21.7 19.7 204
RC IRMA 18.3 20.8 18.7 21.4

NRA 18.2 20.5 18.6 21.2

FREE 18.3 20.8 18.7 21.4

HIGH RC RMA 21.h 23.8 21.8 2h.5
RC IRMA 20. 14 22.9 20.8 23.6

NRA 20.3 22,7 20,7 23.3

FREE 20.4 22.9 20.8 23.6

-

(a) Me(z) = t1+15, where t, 1s the time point satisfying F(tj;z)/F(aL;z) = .50

1

-~

P10(2Z) = t2+15, where t. is the time point satisfying F(tggz)/F(aL;Z) = .10

2

(The procedure to calculate Me(z) and P10(z) is outlined in Appendix E6).



Table Af. Relative risks, used for comparison of subgroups or causes in competing risks models

Cause—-specific and subgroup-specific relative risk Relative risk for total hazard
Model Assumptions Comparison of Z Comparison of ] Assumption Comparison of Z
satisfied(a) with zs given j(b) with jo, given Z(C) satisfied(a) with Zo(d)
(3.40) - - - - -
(3.66) SPH SII e 97 - - -
v.
(3.62) PH 111 - e 92 - -
(3.64) PH IT(=SII+RII) e J% B B B
T B T
(3.67) SPH SIT, T,,=T, e’ - ST el=¢?
iz "z Jz )‘joz Bz A.Z iz
(3.65) spH SII,III e /e e /e SI e “=(ZedN/(Ze )
J J
Y. 1
L - _ J _ _ Vo)
(3.63) PH III,ij Y e =
T g T
(3.60) PH IT,T._=1 e ? - I e?=¢?
Jz z S Aoy A . , "
jz. iz, iz "3, 2 iz jz,
(3.57) PH IT,I1I e /e e /e I e T = (ZeY)/(Z e )
J J
Tz 13 B, T
(3.68) SPH STI,IIT, A, =vs+T, e | e ST, A3,775%T, e “=e
4 T Y. B T
_ z J _ z_ 'z
(3.61) PH II,III,AJZ—Yj+TZ e e I’Ajz yj+rz e e
(a) SII and RII : footnote Fig. C5; SI : assumption I holds within each stratum.
(v) In PH meodels : sz =T, =0; in SPH models : Z and z_ are subgroups of the same stratum - i.e. Z = (21,22) and z = (21,220) -
o “o
and szo = TZO = 0. Also : Ajozo = 0 but Ajzo # 0 in general.
(c) In general kj 7 # 0, but Vi g =¥ = 0.
o o o
(d) In PH and in SPH models : Bz = 0; see (b) for z and z in SPH models.

e}



Table A9, Shift parameters and relative risks in parametrized SPH models

Comparison through cause-specific

Comparison through

hazards total hazards
Parametrized  SPH Model Comp. of Comp. of z, and Comp. of J with Comp. of Z with Comp. of Z with
Model origin in Zio given j, jo, given z Zs given j(c> ZO(C)
z, and ZWO(a) after adjusting
for origin(b>
. ! o
‘ Jz, Jz, iz iz gy

(3.69-70a) (3.66) bz e = e - e =e [e -

1

T' T TI ¥ B T

(3.69-70b) (3.67) b, e = e -~ e =e Je e =e

1

w. Al Yoo Al At T.. Al Al 8 Al Al
JOZ1_ JoZs JZ__ Jz ).z JZ“ JZ JZ Z_ Jz JZ, :

(3.71-72a) (3.65) bz e =e e =e /e e =e e e =(Ze )/(Ze JRe

1 J J T

: oA ' tAl Al A

, w,joz1 Xaozo YJ JZ A z Tz Jz JZO BZ Jz JZO
(3.71-72b) (3.68) b, e =e e =e /e e =e /e e =(Ze )/(Ze )

1 J J
(a) zZ, and zZ,, are different strata; Z, is the reference stratum : bz =0,

10
(b) I.e. comparison of the reference subgroup z, (in stratum.21) with the reference subgroup z_ (in stratum 210); Wiz =0;
10

only exp (mj

(c) z and Z_ are subgroups in the same stratum (Z

)
OZT

is given if there exists a reference cause (i.e. if III holds).

1)°
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Table A0, Specification of the linear predictor in GLIM3, under various competing

risks models

(a)

Model GLIM3 expression of the linear predictor
(3.40) TxTYPEXZ

(3.66) TxTYPEXZ1+TYPEXZ
(3.62) TxZ+TYPE%Z
(3.6k4) TxTYPE+TYPEXZ
(3.67) TTYPEXZ1+Z
(3.65) T%Z1+TYPE%XZ
(3.63) TxZ+TYPE

{3.60) T%TYPE+Z

(3.57) T+TYPE%Z

(3.68) TxZ1+TYPE+Z
(3.61) T+TYPE+Z

(a) Z stands for an expression depending on ZR (i.e. REL), ZE (i.e. EDU) and/or
ZC {i.e. COH).

71 stands for an expression depending on the stratifying covariates only.
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) under the model TX + TYPEX(ZR + ZE + ZC)

-~

Table A11. Relative risks exp ().

jz
ZC
48-62 38-47

7E 7R ex;z exéz eA;Z exéz
PRI RC RMA 1. .0039 .6997 .0011
(.0029) (.0309) (.0000)

RC IRMA .9194 .0713 .6433 .0200

(.okk8) (.0161) (.0k61) (.0051)

NRA .9164 .2L03 .6h12 L0673

(.0763) (.0625) (.0627) (.0191)

FREE . 7087 .2615 .4959 .0733

(.072h) (.0709) (.0567) (.0215)

SEC RC RMA .6266 . 0022 L4384 .0006
(.0337) (.0016) (.0336) (.0000)

RC IRMA 5761 .0399 .Lo31 L0112

(.0kos5) (.0057) (.0387) (.0024)

NRA .57kh2 L1345 .ho17 L0377
(.0565) (.02k5) (.oL6k) (.0092)

FREE Lhhh .1heh .3107 .0k10
______________ __(.0511) (.0287) (.okok)  (.o10h)
HIGH RC RMA .5396 .00k 1 L3776 .0012
(.0365) (.0030) (.033L) (.0000)

RC IRMA .4961 .0T60 L3472 .0213

(.0k436) (.0126) (.0377) (.0051)

NRA .Loks L2561 .3460 .0718

(.05k41) (.0508) (.03L46) (.0188)

FREE .382k .2786 .2676 L0781

(.0L453) (.0k480) (.0359) (.0189)
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(a) -~

Table A12, Subgroup-specific relative risks exp {yjz) and subgroup-specific weights

6. under the model T~ + TYPEX(ZR + ZE + ZC).

JZ
ZC
48-62 38-47
743 ZR .22 0.y 0, o 22 6, 5y,
PRI RC RMA .0039 L9961 .0039 .0016 .9984 .0016
(.0029) (.0012)
RC IRMA L0776 .9280 .0720 .0311 .9699 .0301
(.0173) (.0078)
NRA .2622 . 7923 .2077 . 1050 .9050 .0950
(.0699) (.0303)
FREE .3689 . 7305 .2695 L1478 L8712 . 1288
(.10L8) (.0kL50)
SEC RC RMA .0035 .9965 . 0035 .00 1L .9986 .001k
(.0025) (.0010)
RC IRMA .0693 .9351 L0649 .0278 L9730 L0270
(.0090) (.0059)
NRA .2343 .8102 . 1898 .0938 .91k2 .0858
(.0h35) (.0232)
FREE .3297 . 7520 .2480 . 1320 .8833 L1167
(.0687) (.0349)
HIGH RC RMA L0077 .9924 .0076 .0031 .9969 .0031
(.0055) (.0022)
RC IRMA .1532 L8671 . 1329 L0611k .9kh2p .0578
(.0246) (.01k46)
NRA .5178 .6589 L3411 - 2074 .8283 AT17
(.1066) (.0568)
FREE 7286 .5785 4215 2918 7T .2259
(.1363) (.0743)

o~

(a) The subgroup-specific relative risks exp (YTZ) are all equal to 1. since marriage

is the reference cause.



Table A13. Cause-specific relative risks exp (sz

T + TYPEX(ZR + ZE + ZC)
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) under the model

AN
48-62 38-47

7 7R eT1z Toz eT1z eTEZ
PRI RC RMA . 1. L6997 .2802
(.0309) .0553)

RC IRMA 1. 1. L6997 2802
(.0309) .0552)

NRA .9967 3.369 .69Th Lolb
(.0769) (.6171) (.0615) .2524)

FREE L7708 3.666 .5394 .027
(.0755) (.6801) (.057T) .2760)

SEC RC RMA L6266 .5599 - .L3sh L1569
, (.0337) (.1279) (.0336) .0507)

RC IRMA .6266 .5599 .Lu38L . 1569
(.0337) (.1279) (.0336) .0507)

NRA .6245 1.886 L4369 .5286
(.057T7) (.5410) (.0k66) .1932)

FREE L4830 2.053 . L3379 L5752
(.053L) (.5891) {.0k15) .2102)

HIGH RC RMA 1. 1. L6997 .2802
' (.0309) .0553)

RC IRMA 1. 1. .6997 .2802
(.0309) .0553)

NRA L9967 3.369 69Tk 9Lk
(.0769) (.6171) (.0615) .2524)

FREE L7708 3.666 .539h .027
(.0755) (.6801) (.0577) .2760)
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8
Table A1l. Relative risks e ~ under the model Tett + TYPEx¢ZR + ZE + ZC)

C

ZE ZR 48-62 38-47
PRI RC RMA 1. L6997
(.0308)
RC IRMA 1. .6997
(.0302)

NRA .9967 L69Th
(.0T718) (.0584)

FREE . 7708 5394
(.0673) (.0536)

SEC RC RMA .6266 L4384
(.0336) (.0335)

RC IRMA . 6266 .L38L
(.0329) (.0329)

NRA L6245 L4369
(.0578) (.0kL8)

FREE 4830 . 3379
(.0529) (.0394)
HIGH RC RMA 1. .6997
‘ (.0308)
RC IRMA 1. 6997
(.0302)

NRA .9967 .69Th
(.0803) (.0602)
FREE L7708 .5394

(.OThk) (.055k)
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wj z.
Table A15. Shift parameters bz and relative risks e ° , under the model
1

T* 4+ TYPE % (ZR + ZE + ZC)

Stratum z -
1 ) mj 7
(reference subgroup Z ) b e © 1
o] Z1

PRI/SEC - RC RMA 0 1.

(PRI - RC RMA - 48-62)
PRI/SEC - not RC RMA -1 L9194

(PRI - RC IRMA - 48-62) (.oLL8)
HIGH - RC RMA 42 .5396

(HIGH - RC RMA - 48-62) (.0365)
HIGH - not RC RMA +1 Lho61

(HIGH - RC IRMA - 48-62) (.0L36)
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Table A16. Covariate effects under the model T* + TYPEx(ZR + ZE + Z().

(a)

Relative risk

{standard error)

(a)

Marriage Cohabitation Shift
REL RC RMA 1. 1. 0
RC IRMA .9194 18.37 -1
(.okL8) (13.14)
NRA L9164 61.87 -1
(.0763) (Lh.81)
FREE .T087 67.33 -1
(.0724) (48.68)
EDU PRI 1. 1. 0
SEC L6266 .5599 0
(.0337) (.1279)
HIGH .5396 1.066 2
(.0365) (.2575)
COH 48-62 1. 1. 0
38-47 L6997 .2802 0
(.0309) (.0553)

(a) Relative to the first category of the covariate.
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Tabvle A17. BEstimated Tirst deciles PWOJ(Z) and medians Mej(z) under the model

T* 4 TYPEX(ZR + ZE + ZC)

First marriage (j=1) First cohabitation (j=2)

ZC ZC
48 - 62 38 - 47 48 - 62 38 - 47

P101(2) Mei(z) P1Q1(z)< Me, 2(z)

(z) 7 Pwog(z)‘ Mezig) P102(Z) Me

PRI RC RMA 19.0 21.1 19.2 21.6 21.2 25.5 21.2 25.5
RC IRMA 18.0 20.2 18.3 20.7 19.9 23.8 20.1 2h.3
NRA 18.1 20.2 18.3 20.7 19.2 22.3 19.9 23.9
FREE 18.2 20.5 18.5 21,1 19.1 22.2 19 23.8
SEC  RC RMA 19.3 21.7 19.7 22.3 21.2 25.5 21. 25.5
RC IRMA 18. 4 20.9 18.8 21.5 20.1 2L, 1 20.2 2h.h
NRA 18.4 20.9 18.8 21.5 19.6 23.2 20.1 241
FREE 18.7 21.3 19.0 21.9 19.5 23.0 20.0 2k 1
HIGH RC RMA 21.4 2h.o 21.8 2L.6 23.2 27.3 23.2 27.k
RC IRMA 20.5 23.1 20.9 23.7 21.9 25.8 22.1 26.3
NRA 20.5 23.1 20.9 23.7 21,2 24,2 21.9 25.8
FREE 20.8 23.6 21.1 ob .1 21.1 2k .1 21.9 25.7
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APPENDIX B. GLIM3 - PROGRAMMES AND —QUTPUTS

B1. GLIM3 - programme for Ffitting the PH model T + REL + EDU + COH.

SUNITS 402

$DATA BT N D1 D2 W REL EDU COH
sDINPUT 1

sCALC T=BT-14

$FACTOR T 21 REL 4 EDU 3 COH 2
$CALC D=D1+D2 <DEL D1 D2
£CALC LE=YLOG(N-(W+D)/2)

$CALC %S=0. : ¥S=US-2%D#(%ULOG(D)—-LE)-D
$SPRINT : : : " GSATURATED MODEL T#REL#EDU*COH "
: " HAS —2#L0G(LIKELIHOOD) = *oxe A5
$YVAR D
$ERROR P
$O0FFSET LE

$FIT T+REL+EDU+COH
$DISPLAY L A
$CALC ZL=ZS+ZQV

$PRINT THE CURRENT MODEL HAS ¢
" —-2¥LOG(LIKELIHOOD) = "R YL
" LIKELIHOOD RATIO CHI SQUARE = *oRe UDV
' PEARSON CHI SQUARE = "oRF YUX2
" WITH DEGREES 0OF FREEDOM = * #3 %UDF

$8TOP
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B1. (continued) CLIM3 - output after fitting the PH model T + REL + EDU + COH

1 6LIM 3. 11 (C)1977 ROYAL STATISTICAL SOCIETY., LONDON

————— $DATA LIST ABOLISHED
————— INVALID FUNCTION/OPERATOR ARGUMENT(S)

SATURATED MODEL TH#REL#EDU*COH

HAS -2#L0G(LIKELIHOOD) = 3706. 52813
SCALED
CYCLE DEVIANCE DF
4 659. 9 375

LINEAR PREDICTOR
AGM T REL EDU COH

ESTIMATE S, E. PARAMETER

1 -5 .774 . 4056 %GM

0 ZERQO AL IASED T¢1)

2 1.474 . 44466 T(2)

3 <. 801 . 4143 T(3)

4 3. 626 . 8075 T(4)

5 4. 229 . 4053 T(S3)

) 4. 843 . 4041 T(&)

7 3. 283 . 3039 T(7)

8 9. 344 . 4052 Ti8)

9 5. 911 . 4064 T(?)

10 5. 573 . 4091 T(10)

11 9. 588 . 4135 T(11)

12 9. 281 . 263 T(12)

i3 5. 133 . 4411 TC(13)

14 4. 464 . 4943 T(14)

15 4. 576 . 901% T(15)

16 4. 861 . 4943 T(146)

17 4. 994 . 9014 T(17)

18 4. &45 . 5728 T(18)

19 3.777 . 7933 T(19)

20 4. 379 . 6969 T(20)

21 4. 074 . 7920 T(21)

0O ZERO ALIASED REL (1)

22 . 3020 .4794E-O1 REL(2)

23 . 4248 . 7703E-Q1 REL(3)

24 . 3333 . B878E-01 REL(4)

9] ZERD ALIASED EDU(1)

25 =-. 4933 . 5244E-01 EDU(2)

26 —1.198 .6B56E~-Q1 EDU(3)

0 ZERO ALIASED COHC1)

27 =-.4038 . 428BE-01 COH(2)
SCALE PARAMETER TaKEN AS 1. 000
THE CURRENT MODEL HAS
-2#LOG(LIKELIHOOD) = 4566, 45922
LIKELIHOOD RATIO CHI SGUARE = &59. 931083
PEARSON CHI SQUARE = 693. 422384

WITH DEGREES OF FREEDOM = 375
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B2. GLIM3-programme for fitting the SPH model T" + REL + EDU + COH

SUNITS 402

$DATA BT N Dt D2 W REL EDU COH

$DINPUT 1

$CALC T=BT-14 : T=LIF(LEQ(EDU, 3}, T, T+2}
$FACTOR T 23 REL 4 EDU 3 COH 2

$CaALC D=D1+D2 <DEL D1 D2

$CALC LE=Y%LOG(N-(W+D)/2}

$CALC %8=0. : US=AG-2#D#(%LOG(D)-LE)-D
$PRINT : : : " SATURATED MODEL T#*REL®EDU#COH "
:o " HAS -2#L0OG(LIKELIHOOD) = *oxg U5
$YVAR D
$ERROR P
$OFFSET LE

$FIT T+REL+EDU+COH
$DISPLAY L A
$CALC ZL=7G+%DV

SPRINT THE CURRENT MODEL HAGS "
v -2l 0G(LIKELIHOOD) = AR
*  LIKELIHOOD RATIO CHI SQUARE = " o#9 LDV
“  PEARSON CHI SQUARE = "R UX2
" WITH DEGREES OF FREEDOM = " %3 XDF

$STOP
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B2. (continued) GLIM3 - Output after fitting the SPH model T" + REL + EDU + COH

1 GLIM 3. 11 (C)1977 ROYAL STATISTICAL SOCIETY., LONDON

~~~~~ SDATA LIST ABOLISHED
***** INVALID FUNCTION/OPERATOR ARGUMENT(S)

SATURATED MODEL THREL#EDU#COH

HAS —-2¥LO0G(LIKELIHOOD) = 3906. 52813
SCALED ,
CYCLE DEVIANCE DF
8 459. 8 373

LINEAR PREDICTOR
ZGM T REL EDU COH

ESTIMATE 8. E. PARAMETER

1 -12. 22 13. 25 ~ZeM

0 ZERO AL IASED T(1)

2 6. 169 13. 29 T(2)

3 &. 633 13. 26 T(3)

4 7. 963 13. 23 T(4)

9 9. 237 13. 25 T(S5)

& 10. 15 13. 23 T(6)

7 10. 83 13. 29 TC7)

8 11. 40 13, 29 T(8)

9 11.74 13. 25 T(F)
10 11.72 13. 25 T{10)
11 11.79 13. 295 T(11)
12 11.73 13. 29 TC12)
13 11.89 13. 25 T(13)
14 11. 25 13. 23 T(14)
13 11,17 13. 25 T(13)
16 11. 06 13. 25 T{16)
17 10. 95 13. 26 T(17)
18 10. 62 13. 26 T(18)
19 10. 94 13. 26 T(19)
20 11.31 13. 2 T(20)
21 10. 91 13. 26 T(21)
22 3. 335 20. 20 T({22)
23 3.148 22. 45 T(23)

0 ZERD AL IASED REL(1)
24 . 3009 4800E-01 REL(2)
25 . 4395 .7711E-01 REL(3)
2&6 . 2996 . 8878E~01 REL(4)

0 ZERO ALIASED EDU{1)
27 —. 4826 . 5242E~01  EDU(2)
28 -—. 39642 . 6454E~01 EDU(3)

O ZERQ ALIASED COH(1)
29 -.4030 63E-01  COH()
SCALE PARAMETER TAKEN AS 1. 000

THE CURRENT MODEL HAS

—2#LOG(LIKELIHOOD) = 43&6. 34973
LIKELIHOOD RATIO CHI SQUARE = 45%. 821591
PEARSON CHI SQUARE = 476. 402581

_WITH DEGREES OF FREEDOM = 373.
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B3. GLIM3-programme for fitting the SPH model T* + REL + EDU + COH

SUNITS 402
$DATA BT N D1 D2 W REL EDU COH
$DINPUT 1
$CALC T=BT-14
 T=%XIF(ZEG(EDU, L )#4ANE(REL, 13}, T+3, T)
T=%IF (ZEQ(EDU, 2)#%UNE(REL, 1), T+3, T)
T=%IF (ZEQ(EDU, 1) #%ZEG(REL, 1), T+2, T)
T=%AIF(AEQ(EDU, 2} ¥LEQ(REL., 1), T+, T)
. T=AIF(AEQ(EDU, 3)#%NE(REL, 1), T+1, T)
$FACTOR T 24 REL 4 EDU 3 COH 2
$CALC D=Di+D2 <$DEL D1 Dz
$CALC LE=YLOG(N—(W+D}/2}
$CALC %B=0. : %48=Y%S-2#D#(%ZLO0G(D)-LE}-D

$PRINT : : : " SATURATED MODEL T#REL#EDU#COH *
Do " HAS -2#L06 (LIKELIHOOD) = R A 4
$YVAR D
$ERROR P
$OFFSET LE

$FIT TH+REL+EDU+COH
$DISPLAY L A
$CALC %lL= £S+ZDV

$PRINT : :© : THE CURRENT MODEL HAS "
oo —2#LOG(LIKELIHOOD) = "owg UL
*  LIKELIHOOD RATIO CHI SQUARE = *ow9 ADV
“  PEARSON CHI SQUARE = .
Y WITH DEGREES 0OF FREEDOM = * %3 %ADF

$5TOP
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B3. (continued) GLIM3 - output after fitting the SPH model T* + REL + EDU + COH

1 GLIM 3. 11 (C¥1977 ROYAL STATISTICAL SOCIETY, LONDON

""""" #DATA LIST ABOLISHED
""""" INVALID FUNCTION/OPERATOR ARGUMENT (S)

SATURATED MODEL T#REL#EDU#COH

HAS -2#L 06(LIKELIHOOD) = 3906. 532813
SCALED
CYCLE DEVIANCE DF
8 410. 3 372

LINEAR PREDICTOR
Z6M T REL EDU COH

ESTIMATE S.E. PARAMETER

1 12 58 30. 59 ZGM

0 ZERO ALTIASED T(1)

2 . 5967 33. 29 T(2)

3 6. 138 30. 61 T(3)

4 7. 364 30. 59 T(4)

S 8. 760 30. 59 T(S)

& 10. 06 30. 59 T(&)

7 10. 95 30. 59 T(7)

8 11. 60 30. 59 T(8)

9 12. 07 30. 59 T(?)
10 12. 39 30. 59 T(10)
i1 12 38 30. 59 T(11)
12 12.27 30. 59 T¢(12)
13 12. 45 30. 59 T(13)
14 12. 26 30. 59 T(14)
15 11.87 30. 59 T(15)
16 11. 6% 30. 59 T(16)
17 11,15 30. 59 T(17)
18 11.85 30. 59 T(18)
19 11.10 30. 59 T(19)
20 11. &0 30. 59 T(20)
21 i11.85 30. 59 T(21)
22 10. 94 30. 60 T(22)
23 3. 931 34. 63 T(23)
24 3. 680 37. 94 T(24)

O ZERD ALIASED REL (1)
29 -~ 260901 . A4814E-01 REL(2)
26 . 1104 . 7715E-01 REL(3)
27 ~-.2834E-01 . 8883E~-01 REL(4)

o ZERQ ALTIASED EDUCC1)
28 -. 4723 . 5240E-01 EDU(2)
29 -—. 5954 . 6448E-01 EDU(3)

O ZERO ALIASED COH(1)
30 -. 4100 . 4277E-01  COH(2)
SCALE PARAMETER TAKEN AS 1. 000

THE CURRENT MODEL HAS

-2#L0G(LIKELIHOOD) = 4316. B6769
LIKELIHOOD RATIO CHI SQUARE = 410. 332560
PEARSON CHI SQUARE = 443. 599732

WITH DEGREES OF FREEDOM = 372.
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Bk. Computation of {eco)variances and standard errors of base—line hazards

and relative risks in the model T* + REL + EDY + COH.

Appendix B3 shows the GLIM3-programme for fitting the model
T® 4+ REL + EDU + COH, and the estimates of the linear parameters with
their standard errors. These linear parameters are — for the purpose of
interpretation of the fitted results - transformed into base-line hazards
and relative risks. It will be shown in this appendix how the (co) vari-

ances and standard errors of the new parameters can be obtained by using GLIM3.

The model Fformula can be written as

H

&

u(t+bz1;200}.e

]

u{t;z)

il

or wits;z) = e T.e z for a;_, =t <iaz,
where Z is a subgroup in stratum Z,, and Z is the reference subgroup

in the reference stratum Z Since I varies from 1 to 21, and since

10°

the shift bz is at most 3 (years), the index Z+b2 of the time parsmeters
1 1

o varies from 1 to 24. Hence, 24 base-line hazards expk{az), I=1,...24,

are computed. Since there are 24 subgroups, 23 relative risks exp (B;) are
alsc produced. In total, 47 new parameters, their standard errors and
(co)variances are obtained. This is done by using the GLIM3-macros MULS,
MUL6, MULYT, MUL8 and COVA.shown in Appendix D. Since the macro COVA uses

a macro PADE — which computes the new parameters and the first order partial
derivatives of these new parameters with respect to the linear parameters

estimated by GLIM3 - the basic elements needed for the construction of this

macro are discussed in the following paragraphs.

If the new parameters are denoted by ¢, {(i=1,...47) - corresponding
to the notations in Appendix D - and if the linear parameters are dencted
by PEj (j=1,...30) - corresponding to the interval names %PE(j) in GLIM3 -,
then the ¢i are functions of the PEj as follows

=
1l

exp (PE1)

-©-
1}

exp (PE1 + PEi) for i=2,...24
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$. = exp (PEi) for i=25,...30

$. = exp {PEi_6 + PE28) for i=31,...33

¢i = exp (PEi_9 + PE29) for i=3k4,...36

¢i = exp (PEi—TQ + PEBO) for i=37,...39

¢; = exp (PEi—12 + PESO) for i=h0o,h41

¢i = exp <PEi~1T + PE28'+ PEBO) for i=h2,...4kL

6. = exp (PEi_QO t PEyy + PE3O) for i=h5,...47

Note that ¢1""¢2h are the base-line hazards, and ¢ are the

o5+ 0y

relative risks exp (B;). For instance, ¢h3 is the relative risks corres-—

ponding to the subgroup NRA - SEC - 38-47.

Since the ¢i are ordinary exponential Functions of the PEj

>

3¢,

the first order partial derivatives can easlly be found to be either

oPE,
d

¢i if ¢i is a function of PEj or zero if ¢i ig not a function of PEj.

A U7 x 30 matrix A is then defined as follows :

3¢

= 3 = 7 i =
A= (aij)i=1,...h7 with a4 1 if - 95
J=1,...30 J
36,
=0 if = = 0.
oFPE.
d

If FI is the 1 x 47 vector of new parameters ¢;, and F is the 47 x 47
matrix for which any row is equal to the vector FI, them the matrix D
of first order partial derivatives can be written as the product of

the matrix F with the matrix A :
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D=F.A

Moreover, if PE is the 1 x 30 vector of linear parameters PEj, then FI

can be written as follows :
T
FI = exp (PE.A™)

where T denctes matrix transposition, and eXp denotes matrix exponentiation.

These ideas were used in order to construct the macro PADE.

The macro PADE uses another macro PHID. These two macros are as

follows.

$M PHID ! %AI-TH NEW PARAMETER & PARTIAL DERIVATIVES

$CAL 4ZA=%A-1 . ZLI=UN-%4A : FI(ZD)=ACWU(D(J+(LI-1)#APL)I#LPE(J)) !
: FICZI)=XEXP(FI(ZI)) !

¢ DAJH (AT~ 1) #ZAPL)=D(J+(ZI-1 ) #ZPL)#FI(%XI) $SENDM

$M PADE ! NEW PARAMETERS (F1I1) PARTIAL DERIVATIVES (D)

$VAR 4N FI : %M I1 I2 D : ZPL J

$CAL I1=%GL (%N, %ZPL) : IQ=?GL(%PL:1) : D=%EQ(I1, I2) !

+4ZEQ(I2, 1)#ZGE(I1, 2)#%LE(I1,24) !

+ZEQ(I2, 25)#(ZEGQG(I1, 31)Y+ZEQ(I1, J4)+%LEG(I1, 37)+%ZEQG(I1, 42)+%ZEQ(I1, 45))
+4EQ(I2, 26)#(ZEQ(I1, 32)+ZEQ(I1,35)+/ZEQ(I1, 38)+ZEQ(I1, 43)+%ZEQ(I1, 46))
+2§Gé1%:Q?)*(%EG(II:33)+ZEQ(I!:36)+ZEG(II:39)+ZEQ(II:44)+ZEG(11.47))
M -
+4ZEQG(I2, 28)#(4CE(I1, 31)*ZLE(I1, 33)+ZEQ(I1, 40)+%GE(11:42)“!LE(II:44))
+%4EGQ(I2, 29)#(4GE(I1, 34)#XLE(I1, 36)+4EQ(I1, 41)+%4GE(I1, 45
+ZEQ(I2, 30)#%ZGE(I1,37) !

J=AGL(ZPL, 1) : %ZA=%4N !

$WHI %A PHID !
$DEL I1 12 U 1}
$SENDM

To start with, macro PADE computes the matrix A and stores its elements
in the GLIM3-vector D. Then the macro PHID is used repeatedly to compute
the i-th new parameter and its partial derivatives, and to store these

derivatives in the corresponding components of the GLIM3-vector D.

Pinally, the computation of the new parameters, their standard .

errors and their (co)variances is executed through the GLIM3-statements
$CALC %“N=47 $USE COvAa

since there are L47 new parameters. The estimated standard errors are as

follows
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The (co)variances of the new parameters are shown on the next five pages.

ESTIMATE

. 3441E-05
. &230E-09
. 1594E-0Q2
. Y430E~-Q2
. 2192E-01
. B076E-01
. 1956
. 3737
. 9991

o0

8. E.

. 1997E-0Q2
. 1837E-02
. 3871E-02
. 8567E-02
. 1645E~01

. &575E~01
. S899E-01
. 4529E-01

. 5068E-01
. 4516E-01
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Bh. (Continued)

Estimate

Parameter pair

Estimate

Parasmeter pair
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Parameter pair
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BL. (Continued)

Estimate Parameter pair Estimate

Parameter pair
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Parameter pair
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B5. GLIM3-programme for fitting the model T* 4 TYPEx(ZR + ZE + Z()
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B5. (continued) GLIM3-output after fitting the model ™ + TYPE%(ZR + ZE + ZC)

GLIM 3.11 (C)1977 ROYAL STATISTICAL SOCIETY, LONDON
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B5. (Continued).

THE CURRENT MODEL HaAS

—-2#L0G(LIKELIHOOD) = 94435 41574
LIKELIHOOD RATIO CHI SQUARE = 6£80. 471321
PEARSON CHI SQUARE = 1753. 73717

WITH DEGREES OF FREEDOM = 767.



Figure Cl1. Stratification according to covariate z
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Figure C3. Schematic presentation of the shifts (or stratifications) denoted

by T" and *

a. 1", i.e. 2 strata and a shift over 2 years

PRI; SEC subgroups
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Figure Ch. Schematic presentation of various classes of PH models in the presence

of competing risks and under the assumption of piecewise constant

hazards
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Figure C5. Schematic presentation of various classes of PH and SPH models (in boxes)

in the presence of competing risks and under the assumption of piecewise

(a)

constant hazards

(3.40)
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SIT 11T

+y .+
z. V572
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0,4y . +T
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STIT : assumption II holds within each stratum
RII : assumption II holds also across strata

(RII can be assumed if SII is already assumed)



Figure C6,

Legend
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Appendix D. GLIM3-macros for calculating the covariance matrix of funections

of parameter estimstes.

T .
Let 6 = (61,..... ,ek) be a vector of & parameters,

.\ T . ,
let ¢ = (¢1,..... ,¢Z) be a vector of . new parameters defined as functions
of the parameters 61,..... Gk by

¢i=fi(@_> 1= 1,0 ..., A

where the fi are known functions.

If the fi are sufficiently well-behaved, so that, among other things,
df.
i

38 .
J

the partial derivatives exist, then it can be shown, by considering
Taylor expansions of the functions f} about 6 = 6 (i.e. the maximum likelihood
estimates of the parameters 67,..... ek), that the following approximate formula

holds.
C=Dn.v.0"

where V is the kxk covariance matrix of 6, C is the Ixl covariance matrix
of ¢, and D is the Ixk matrix of partial derivatives (evaluated in the

m.l.e. 6).

In GLIM-Newsletter no. 5 R. Burn and R. Thompson presented macros
for calculating the matrix C, but they only considered the case k=1, i.e.
k parameters 07,..... Sk are transformed in X new parameters ¢j,..... ¢k'
Consequently, their macros MUL1, MUL2, MUL3, MULL, as well as the macro COVA
can only be used in the special case k=L. This note presents macros MULS,
MUL6, MULT and MUL8 - for multiplication of D with V and D.V with DT - which
can be used in the general case considered. The main differences between
the macros MUL1, MUL2, MUL3, MUL4 and the macros MUL5, MUL6, MULT, MUL8 are

caused by
1° the use of a new scalar %N, which stands for the number 7 of new parameters;

2° the use of a new vector VCM, which, after the calculations, contains the

(co)variances of the new parameters ¢1,.....¢Z.



-135-

Note that VCM needs to be defined since the system vector 2v¢ {used by

Burn and Thompson) does not have, in general, the correct length Z(Z+1)/2.

Note also that, after the calculations, the vector %VC still contains the

(co)variances of the parameters 8i,..... ek.

The macros MUL5, MUL6, MULT and MUL8 are as follows.

M MULDS $CAL ZA=ZA~-1 : %K=%UPL-4A !
VI=ZLE(J, ZK) # (ZK# (UK—1) 72+ DI +4LCT (U ZK) # (U (J-1) /2+ZK) !

D VI=ZVC (V1)  ZB=%N $WHI %B MULS& $$ENDM

M MULSE $CAL “B=%UB-1 : %I=%UN-%UB : JI1=LZEQ(I1l, XI) !

T DLGJIACU(JLIYI=D ¢ DV(ATI+HZNS (ZK—1))=%CU(D1#V1) $$ENDM

$M MUL7 $CAL XA=%A—-1 @ ZAI=UN-%A @ JI=AEQ(I2, %I) !
V1(JIZCUGJ1) =DV . YB=%LI SWHI “ZB MULB $$ENDM

$M MULB $CAL %“B=%B-1 : ZK=%ZI-%B :@ JI=XZEQ(I1, ZK) !
D1(J1#%4CUCJL) )=D : VCMIZK+LI#(LI-1)/2)=%4CU(V1#D1) $$SENDM

The macro COVA constructed by Burn and Thompson depends heavily
on the analysis to be done. However, part of it is quite general — i.e.
the definition (through $VAR) of the vectors needed for the calculations,

the use of the macros for the matrix multiplications, and the displaying

of the results. Therefore, the following general macro COVA is presented.

$M COva ¢

SCAL AM=UN®ZLPL : AT=%UN#(ZN+1)/2 : %S=UN#AUN !

$EXT %PE !

$USE PADE !

$VAR ZPL J V1 D1 : ZM J1 Il I2 DV : %T VCM !

$CAL I1=XGL (%N, %ZPL) : J=%GL(%PL, 1) : IZ2=%GL(ZN,1) !
$EXT AvC !

$CAL ZA=LUPL S$WHI %A MULS $CAL %A=%N $WHI %A MUL7 !

$DEL. D DV J V1 D1 I1 I2 Ui ! :
$PRI : : " PAR. ESTIMATE S E* @ !

$VAR 7N I $CAL I=%GL (%N, 1) !

$VAR UT J $CAL J=0 : J(I#(I+1)/2)=1 !

$VAR 7N V1 $CAL V1(J)=VCM : VI=%SQRT(V1) !

$L00 FI vi1 !

$DEL FI I J V1 !

$VAR 4US I1 I2 J1 U !

$CAL I1=%GL (%N, %N) : 12=ZGL(2N;1) D JI=ZAGE(IL, I2) @ J=J1#%ACUJL)

$DEL. J1 !

$VAR ZT K1 $CAL Ki(Ju)=I1 $DEL I1 !

$VAR LT K2 $CAL K2(J)=I2 $DEL I2 J !

$PRI : @ “ PARAMETER PAIR (CO)IYVARIANCE" : !
$L.O0 K1 K2 vCMm !

$DEL. K1 K2 VCM !

$SSENDM

[
H
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Macro COVA uses a macro PADE. This macro is intended for

calculation of the new parameters ¢j..... ¢Z - which should be stored in
af. -

a vector FI - and the partial derivatives = (8) (i =1,.....7;
36.

- . * J

J = T,eee.n k) - which should be stored in a vector D. It must be noted

that all vectors used in the macro COVA may alsc be used 1in the macro
PADE, but they should be deleted as soon as FI and D have got thelr values.
Note also that the scalars %M, 2T and %S may not be redefined in PADE.
The macro COVA can be used after the scalar ZN has been assigned the value

l, i.e. the number of new parameters.

YEXAMPLE :  ABO problem.

Thompson and Baker (1981) presented a loglinear model with composite
link function. The GLIM3-programme for the ABO problem was presented in
their article. Burn and Thompson (1982) calculated the (co)variances of
new parameters p, r and g, i.e. the gene freguencies. The calculations were
repeated using the macros MUL5, MUL6, MULT, MUL8 and COVA shown above.

The macro PADE for this problem is as follows.

$M PADE ' NEW PARAMETERS (FI) & PARTIAL DERIVATIVES (D)
$VAR %N FI !
$CAL FI=%ZEXP(%ZPE) : %G=%ZCU(FI) : FI=FIl/4G !

$VAR %M I1 I2 J1 D !
$CAL I1=%XOL(ZN, %ZPL) : I2=%GL(%ZPL., 1) :@ JI1=ZEG(I1.,I2)

D=FI(J1#%CU(J1))-FI(I1I#FI(I2) !
$DEL I1 I2 J1 !
SSENDM

Since the number of new parameters equals the number of original parameters

in this problem, the macros are used through

$CALC %N=XPL SUSE COVA

The results correspond exactly to those in Burn and Thompson {1982).
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APPENDIX E. MATHEMATICAL ADDENDUM

E1. From (2.1) we have - for smsll At -

u(t;z) .Mt =Pt <7 <t + At|T 2 ,2).

Hence
P(T 2 t|z) -~ P(T 2t + At]|2Z)
u(t;2).0¢ =
P(T 2 t|z)
S(t;z) = 8(¢ + At;z)
S(t;z)
S(t;z) - 8(t + At3z) as(t;z)
But lim = - —
ALYO At at

from the definition of the derivative of a function.

Hence
1 as(ts;z)

u(ts;z)
S(t3;2) at

d--
= e log S (t;Z)
dt

Integration of the latter formula gives

£
S ou(s;z) as
(o]

- [log 5(t;2) - log 5(0;2)]

1}

- log S(t3;z)

since 8(03z) = 1 and log 1 = O.
Formula (2.2a) then follows immediately.

E2. By definition, a p.d.f. f(t;z) is related to its c.d.f. F(t;Z) as follows

ar(t;z)
flt;z) = ——
at
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The c.d.f. F(t3;z) is defined by

F(t;z) = P(7 <t|z).
Since
S(t;2) =P(r = +t|z) =1 - P(T <t|z)
= 1 - F(tBZ)a
we have
as(t;z) aF(t;z)
dat dat
Hence
as(t;z)
Fltsz) = - ——
at

From the results in E1 we get then :

u(tyz) = flt;2)/5(t32),

and (2.4) follows then immediately.

E3. From (2.23) and the definition of the reference subgroup (i.e.

we have

B,
u(ts;z) = u(t;zo).e

Integration gives (2.26), and substitution of (2.26) in
S(t;z) = exp(-A(t;2))

gives

S(tyz) = exp(—A(t;ZO).e

H]
o
i
o~

o+
s
N
R
L

which is {2.25).
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Further

1 - qZ<Z> =e°

by a generalization of (2.15).

Hence
B
-u(t;z_).e ;
1 “QZ(Z) © <t <a

]
0]
)
O
H
Q
5
-
=

H

e
(1 -‘qZ(ZO)) 2
which gives {(2.27).

E4. Since u(t;zé) =0 if t <0, it follows from (2.28a) that

u(t+b;Z;} =0 ift <0, or u(sgzg) =0 if s <b.

Hence A(s;zg) =0 if s <p and S(sgzg) = if s < b,

We get then from (2.28a)

t

F A\

J wluzz’) du

0

f

A(t;zé)

t
= (J wlutbsz) du).e”
o]

t+b

1t w
(J u(S,ZO) ds).e
b

it

Yy Yt w
= (alt+bsz]) A(bszl)) e

‘ w
=»A(t+b;23?.e
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Further

S(t;Zé) exp(fA(tszé))

1l

exp(fA(t+bgzg).ew)

w

= (S(t+b;z;})e :
Generalization of (2.15) gives
. Al
u(az_1,20)

1 - q(az_1,1;zo) = e

W
-u(az_1+b;zg).e
= e

W
1 €
=(1 - gqla,_+b,1;2 )" .

This proves formulae (2.29) to (2.31a).

Note also the following simple relations if w = O :

u£t525) u(t+b;zg),

A(t;zé) = A(t+b;zo),

t

S(t;zo)

S(t+b;zo),

. = -t
q(az_j,i,zé) q(az_1+b,1,zo).
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E5. The system of maximum likelihood.equatiens obtained from .(2.35) is :

3 log £ ~ oy +B,
T T T F By, =0 (2=1,...1)
o 0
A
3 log £ - o, +6,
—=deZ-EEZZ.e' =0 (ze )
3 B 7 A
Z
Equivalently :
B o
(s ¥ z L _ _
a; (% E e “)e =0 (Z=1,...L)
o B
(W L z _
d.z (? EZZ'e Y.e © =0 (ze )
where dZ.= % dZZ and d.z = ? dZZ'

This system of equations should, in general, be solved iteratively, and

computer packages should therefore be used. Note also that if
o
e is solved from the first set of equations, i.e.

%7 ~ Bz
e =dz_/(§EZZ. ), (1=1,...L)

and if these expressions are substituted in the second set of equations,

then we obtain a set of equations in the parameters BZ alone, i.e.

= 0. (ze )

-~

This system is then solved iteratively, yielding estimates BZ, and these

o
estimates are substituted in the above expressions for the e L (

-~

e
L

=1,...L),

yielding estimates e =1,...0).
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E6. By definition, Me(z) is the age at which 50% of women in subgroup Z
ever experiencing first union have already entered into first union.
Similarly, P10(z) is the age at which 10% of women in subgroup Z ever
experiencing first union have already entered into first union. In general,
let tz be the age at which 100p% of women in subgroup Z ever experiencing
first union have already entered into first union. Then, the following

relation is satisfied

=P (E6.1)

An estimate of t, can now be obtained by interpolation (of some function)

between the endpoints a4 and ay which should satisfy the inegualities

;1<az_152} §<a252)
<p< — (E6.2)
(z) 2(z)

(&}

or the inegualities

~ A

Fla;,_,3z2) <p.2(z) <Fla;;z). (E6.3)

Several interpolation methods can be used : e.g. linear or quadratic
interpolation of the cumulative distribution function %(tiZ)""'

A linear interpolation of the cumulative hazard function A{t;z) is
preferred since this function is in each interval [az_1,az) linear in t.
The linear interpolation formula is obtained as follows.

From (E6.3) we get subsequently :

g(ath;z) = 1-p.2(z) >’§(az;z), (E6.L)
or

May_y32) < -log(1-p.2(2)) <Ala32). (56.5)

Note that -log(1-p.&(z)) =_A(t2;2). Hence, the linear interpolation

formula 1s :

Q= -~
L (~1og(1-p.2(z))-Ma;_,32))

Maysz) = May_y3z) | (E6.6)
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This formula may be simplified to

wlog{l*p,ﬁ(z))fz(aZ;];Z)

= (E6.7)
Mz

where ﬁ7z is the estimated (constant) hazard in the 1l-th interval.

Further, we used F(aL;Z) as an estimate for &(z). The interpolaticn

formula used is thus finally :

—log(1—p.F(aL;Z)}—ﬂ(azq1;Z)
z QZ"1 ™
M1z

(E6.8)

E7. Use is made of the generalized Pearson chi-square statistic (Qg) and

the scaled deviance or log-likelihood ratioc chi—square statistic (ii).

Those statistics are defined as follows. Let £C be the estimaEed likelihood
under some model which is called the 'current model', and let £S be the
estimated likelihood under the 'saturated model! (i.e. the model with

estimates as in (2.22)). Let MZZ be the estimated mean of the dependent

variable dZZ under the current model, and note that the estimate of MZZ
under the saturated model is de. Then, the (estimated) generalized Pearson
chi-square statistic 1s defined as
- 2
(@, -M,_)
}A(li > ZZA 1z
z1 MZZ

and the scaled deviance is defined as

EN

2 _ -~ “~

The latter statistic can also be written as

n2

Xp = 2 XX dZZ log (dZZ/MZZ).

z 1
It is known that the statistics Xi and Xi are asymptotically chi-square
distributed with, for example, v degrees of freedom. The number of degrees
of freedom v is, in GLIM-terminology, the number of 'units' minus the
number of independent parameters in the current model. Note that the number

of units is in fact the number of combinations of intervals (1) and
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Eovaria?es {z) with non-zero number of observations - The statistics
XP and xi can be used to test the goodness-of-fit of the current model.
The scaled deviance is useful for comparison of two nested models, say
model 1 and model 2. Let the estimated scaled deviance, its degrees of
freeﬁog, the estimated likelihood and means under model i be ;ii’ Vi Ei
and M§;> respectively. If model 1 is mnested in model 2, then :
Xi1 - Xiz = -2 log (L/L,).
Thus, the difference between the scaled deviances of model 1 and model 2
is again a log~likelihood ratio statistic and, as such, it is asymptotically
chi-square distributed with v, T Y, degrees of freedom. Note that vy T v,
igs also equal to the number of independent parameters added to model 1 to
get model 2. ‘'Analysis of deviance' tables (Baker and Nelder, 1978) are
constructed with scaled deviances and differences between scaled deviances
for nested models. It is not a problem to extend the above ideas to the
competing risks problem. In the notation used to derive formula (3.41)

from formula (3.39) - i.e. X = (z,j) - the scaled deviance can be written as

~p o~
xS =22 Za _log (4
. * 7 1 12%

and the generalized Pearson chi-squared statistic is

Note that the formula ii = -2 log (£C/£S) is still useful. From those

fofmulae, it is clear that the cause covariate can be treasted in the same

way as the other covariates, as has been argued above in the text.



—-145-

E8. cj(z) is the probability that a woman with covariates Z ever enters

into first union due to cause j, and c(z) is the probability that a woman
with covariates z ever enters into first union, lrrespective of cause.

We assumed that entry into first union 1s never due to more than one cause
simultaneously (i.e. the assumption leading to (3.2)). Equation (3.10)
follows immediately from this assumption and from the fundamental probability
theory. Similarly, a woman with covariates Z who ever experiences first
union due to cause j (with probability cj(z)), experiences it either before
time t (with probability Qj(t;Z))or after time t (with probability Sj(t;zn
Hence, the fundamental probability theory gives

cj(z) = Qj(t;Z} + Sj(t;z),

which is equivalent to (3.11).

EQ. By ignoring covariates z and putting t equal to a;_ and h equal to 1

1
in {3.13a), the following can be derived :

qjl = QJ(az_1>T)
a
Z S(s).u.(s)
= J ds
: Sla,_.)
a_, -1
%
-(A(s)-Alay_,))
= I e .u.(s).ds
471
o.
4 (Zed.(s a; 1)
a.q )
= e J . J e J ds
471
a.g a.s
{since pj(S) =e 9 for all s in the I-th interval, and since Z e J

J
is the constant total hazard in the Z-th interval)
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o 1 —(; e JZ).u
= e JZ. J e d du
o
o.
~% e Jz.u u=1
J
o, e
= e JZ. 5
-z e‘JZ U=0
J
o
-2 e Jt
J
a. e -1
= e JZ. S
3 ot

which gives (3.L2).

Formula (3.43) and (3.44) are easily obtained from (3.22e) and (2.Te)

respectively : again t is replaced by « h by 1 and covariates Z are

-1’

ignored.

E10. The following approximations are based on the Taylor series expansion

for the exponential function, i.e.

X X2 x3 xh
e = 1+ x + 5 + +

+ ...

Hence, if | x| dis sufficiently small, we get the first order

approximation :
X?\l
e =1+ x

Thus, 1f the total hazard Ky for the I-th interval is sufficiently small,

we have from (3.Lh2a)

qu = sz
and from (3.4ka) :

qZ = Hy-
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Similarly, if ujZ is sufficiently small (note that this is so if My
is sufficiently small), we get from (3.h3a)

U~ M5

Instead of using a first order approximation we can use the second order

approximation

and a; = UZ'(1 - —E?_>

ir u7 is sufficiently small,

and

if sg is sufficiently small. N
J Ujl

Possibly we can use a first order approximation for e and a second order

—p‘
approximatien for e . Then we can derive the approximate formula :

sz

This gives an approximate relationship between the net probability q(j)Z
and the crude probability qu; the correction factor uses the total
‘hazard My It is interesting to note here that Pollard (1973) presents
a similar approximate relationship between qu and q{j)l {(which he calls
respectively dependent and independent probabilities). The correction
factor in his formula, however, does not depend on the total hazard but

on the net probability corresponding to the alternative cause(s).
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E11. Property A can be demonstrated as follows :

u(t;z) = 2 uj(t;Z) (by (3.2))
J
T,
=2y (t;2 ) e ? (by II)
.3 0 *
J
= Zu(t;z).0., .e IZ (py TIT')
J o
sz
= u(t;ZO).@ 6., . ")
3 o
B
- ) z
= p(t,zo).e
BZ s
if e © is defined as the weighted average Z sz e 4%
J o

Property B can be demonstrated as follows.

utsz) = 2 uj(t;Z) (by (3.2))
J
T.Z
=2 u.(t3z ) e (by II)
. ] o
J
Tz
= (? Uj(t;zo)).e (since szsz)
Tz
= ults;z_).e (vy (3.2))
B
= u(t;zo).e z

B T

if e © is defined as being equal to e Z.
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