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INTRODUCTION 

This paper proposes a unification of models which have been 
used in various demographic disciplines, such as the analysis 
of mortality, intermediate fertility variables and nuptiality. 

The presentation of models as relational ones is already 
well-known to demographers, but was used first in reliability 
studies, bio-assay and medical sciences. The full parametri­
zation of the model sterns from mathematical properties of pro­
bability distributions as the parametrizable relation between 
different distributions, and the transformation of one distri­
bution into another through simple one-to-one functions (linear, 
log-, and power~transformations). 

Since the data to be analysed of ten need to be presented 
in life table format, a large part of this paper is reserved 
for the discussion of life table techniques. In fact, the 
models discussed in this paper are intended for the formal 
(i.e. statistical) comparison of different life tables. 

Finally, estimation of the model parameters is, for quite 
different studies, carried out with the same techniques. In the 
past, techniques were developped in function of the analysis to 
be done and of the problems related to it. 

As a consequence, the methods may be attractive for the 
theoretician, being interested in the statistical background of 
the model, as weIl as for the researcher who wants to use the 
models in order to understand his data. 



I. THE RELATIONAL MODEL 

1.1. The functional representation 

Assume that a sequence of proportions rr*(t), for some 
values of t, represents the cumulative distribution of some 
phenomenon, and that TI (t) is a standard cumulative distribu­
tion for that phenomengn. Then, the functional form of the 
relational model is 

[ 1] 

That is, there exists a linear relation between the transfor­
mations, by ~(.), of the cumulative distributions rr*(t) and 
TI (t). 

s 

The transformation ~(.) 

s1ng from [0,1] into [-00,+00] 
is assumed to be strictly increa-

~ ( 1 ) lim 4>(rr) 
TI'" 1 

+00. 

with ~(o) = lim ~(rr) -00 and 
rr ... o 

The parameter e should be positive. 

Typical examples of phenomhena which can be studied 
through relational modeis, as will be shown in later sections, 
are roughly characterized as follows 

- TI*(t) is the cumulated proportion of married women, married 
at exact age t; 

rrft(t) is the cumulated proportion of children weaned at 
exact age t; 

* TI (t) is the cumulated proportion of the total fertility, 
realized at exact age t. 

1.2. The transformation 

The following transformations frequently occur in demo­
graphic analyses(l) 

rr 
~(rr) = logit (rr) = log (----) , used in the Brass model life 

I-rr 
tables (Brass et al, 1968); 

~(rr) -log (-logTI), used in the relational Gompertz model of 
fertility by age of woman (Brass, 1974); 

~(rr) = log (-log(l-rr», used in analysis of breast-feeding 
(Vanderhoeft, 1982, 1983); 

( 1 ) 

2 

The natural logarithms are used throughout this text, 
x 

x = log e . 
i . e . 



cP(n) e du, 

(.604)·604 -u -.604(u+e ) 

r(.604) 

used in the Coale-McNeil model of age at first marriage, 
as shown in Vanderhoeft (1983) (2) . 

Those special transformations all belong to a very broad 
class of transformations, defined as follows 

cP(n) [ 2 a] 

where FW(') is a cumulative exponential generalized F distri­
bution function (with 2m

l 
and 2m 2 degrees of freedom) 

F r- (w) 
y"; 

m 
mI I mlu 

(--) e (1 + 
m

2 

mI u -(mi +m 2 ) 

e ) du [2b] 

The special transformations listed above are obtained for spe­
cial values of the parameters mi and m

2
, which should be posi­

tive (possibly infinite). Deta1ls about this can be found in 
Vanderhoeft (1983) and are summarized in Appendix Table A.I. 

The parametrization of the transformation cp by [2] links 
several models of different kinds. It also allows for formal 
tests on the transformation to be used, and at the same time 
for the search of other (and better) ones. 

From the 2-parameter class of transformations defined by 
[2] , one can derive I-parameter subclasses • For instance, 
by putting mI = +00, or m2 = +00, or mI = m2 . It is interesting 
to note that the above l1sted special transformations belong to 
I-parameter subclasses (see Appendix A). 

1 .3. The (transformed) standard 

Empirical investigation, i.e. comparison of patterns des­
cribing the same process (e.g. mortality, nuptiality, 
fertility, •••. ) in different populations, has shown regulari­
ties across populations. The differences can be summarized 
with 3 parameters 

(2) r(.) denotes the gamma function 

\

00 -x a-I 
r(a) e x 

o 
dx 

3 



- a shift of some time-variable g(t) (parameter S); 

- a sc ale transformation of that time-variable (parameter 8); 

- a scale transformation of the (cumulated) pattern (para-
meter C). 

Thus, for two populations 1 and 2, with cumulated patterns 
1T 1 (t) and 1T 2 (t), one might have 

* For the rescaled patterns 1T. (t) 
1 

-1 
C. 1T. (t) we can write then 

1 1 

ti 
Hence, 1T

l 
(t) can be used as a standard. 

Here, one of the populations being studied becomes a 
standard (or reference) population. For instance, the group 
of illiterate women, living in rural areas may be the reference 
group in a study of the effe cts of education and residence on 
some phenomenon in a particular country. Such standard (sub) 
populations may be useful for local comparisons (e.g. within 
the country). But since they depend on the analysis to be 
carried out, they will not be widely applicable. Therefore, 
investigators were looking for universal standards 1T (t). 

s 

Heather Booth (1979) derived a universal standard schedule 
for fertility. Lesthaeghe and Page (1980) obtained smooth 
standard schedules for breastfeeding and post-partum amenorr­
hoea. Roughly speaking, they considered a particular observed 
schedule from a population with data of fairly good quality, 
smoothed this schedule to remove irregularities due to random 
errors in the observations and eventually corrected it to give 
a good fit if used in the relational model. 

Other investigators were looking for mathematical formulae 
describing the (standard) pattern of some process. Simple 
methods proceed through various plots of the transformed sche­
dules ~(1T*(t» against time t or a transformation of t (e.g. 
log t). For instance, Martin (1967) found that a plot of 
log-log transforms (i.e. ~(~)=-log(-log1T» of the rescaled 
cumulated fertility against age of women shows a linear rela­
tion. Coale and McNeil (1972) proceeded through more complex 
calculations to find a parametric schedule of first marriage 
in a female cohort from Swedish 1865-69 data. 

4 



A broad elass of time-transformations, defining at the 
same time a standard sehedule (if ~ is given) ean be represen­
ted by the formula : 

a 3 

~(TIs(t» = al + a
2 

(t + ( 4 ) - I 
l 3] 

One may fix 
them from a 
sehedu1e is 
al' a 2 , a 3 , 

a 3 

the parameters al' a?, a 3 and/or a 4 , or estimate 
real data set. Note-that a parametrie standard 
defined by giving some va1ues to the parameters 
a

4
, mI and m2 (3). 

Fina11y, we sha11 assume throughout the text that the 
standard sehedu1es are norma1ized, i.e. TI (t)~l if t~+oo, 

s 
from whieh it fo110ws that C = 1 or TI~(t) TI (t). 

s s s 

(3) Constraints are: a
2

>O, a
3

;;;;'O, t+a
4

>O if a
3 

is non­
integer or zero. Tne ehoiee of a

3
, mI and m

2 
is crueia1, 

sinee they define the shape of the distributlon. Note that 
~(rrs(t» = al + a 2 log (t+a4 ) if a

3
=O, and ~(rrs(t» = al + 

a
2

(t+a
4
-1) if a

3 
= I. 

5 



2. GENERALIZED SEMI-LINEAR RELATIONAL MODELS (GESLIRM) 

2.1. Multiple regression analysis 

Demographic surveys, such as the World Fertility Surveys, 
of ten contain multiple measurements on each individual subject 
(or sample of individual subjects). For instance, apart from 
a woman's fertility (e.g. children ever born), information is 
collected on other variables which affect fertility, such as 
biological (e.g. sex, lactation period, contraceptive use, ... ) 
and socio-economic characteristics (e.g. education, religion .. ). 

Simple techniques consisting of calculating measures for 
all groups of individuals separately may provide useful preli­
minary insight in the data. However, they usually suffer from 
basic problems as sample fragmentation, since demographic sur­
veys are not experimentally designed. 

This can be a reason for the application of a relational 
multiple regression model : a relational model induces a fixed 
underlying law (which is believed to hold in general) in all 
subsamples, removing irregularities in the observed underlying 
pattern, and a multiple regression model allows for joint 
effe cts of the predictors on the dependent variabie. Thus, we 
shall extend [I] to a multiple regression model. 

If ~(t;z) represents the process to be studied for a popu­
lation with characteristics z = (zi , .... z ), and if TI (t) is a 
standard schedule, th en the relational mu~tiple regre~sion 
model is : 

<p(C(z)-l. TI(t;z» = 8(z).<I>(TI (t» + 13(z) [4] 
s 

Thus, all populations z are assumed to follow the same general 
law ~ (t), but they differ from this law in scale and location 
whiehsare summarized in the parameters C(z), 8(z) and 13(z) -
given <1>. 

Although other assumptions may be interesting too, we 
shall further assume that the parameters 8(z) and 13(z) are 
linear in the eharacteristies z, i.e. 8(z) = 8.z' and 
13(z) = 13.z' where e and 13 are parameter vectors (8 1 , ... 8) and 

(13
I

, ... 13
p
)' where z' is the transposed of z, and p 

8.z' = ~8.z. and 13.z' = ~i3.z .. Then, [4] ean be written as 
J J J J 

- I 
<I>(C(z) .TI(t;z» 

6 

p 
~ 

j = 1 
8 .. z.<I>(TI (t» 

J J s 

p 
+ ~ 13.z. 

j = I J J 
[ 5 al 



Thus, the regression model is linear in the parameters 8. and 
S. (1 ~j ~p ) a n d, ifC ( z ) i s kno w nfo r all z, 1 in e a rin th J re -
régressors z. and Z.Qi(1T (t» (l~ j~ p). Writing 1T*(t;Z) == 

-1 J J s 
C(z) .1T(t;Z), it follows that 

* Qi(1T (t;z» 
p 

= ~ 
j = 1 

8 .. Z.Qi(1T (t» 
J J s 

p 
+ ~ 

j = 1 
B . z . 

J J [ 5 b] 

Hence, the multiple regression model for the normalized 
schedules 1T'\t;Z) is generalized linear, where "generalized" 
refers to the transformation <1>(.) and "linear" to both the 
parameters and the predictors. In case of [5bJ, we shall speak 
of Generalized Linear Relational (multiple regression) Models 
(GLIRM). In t e general case [Ga], we speak of Generalized 
Semi-Linear !elational (multiple regression) ~odels (GESLIRM). 

A last remark in this section concerns the predictors of 
the models [SJ. Of course, the z. could be either interval­
scaled (continuous) or categoricalJ(nominal and/or ordinal); 
mixtures might be considered as well. However, since interval­
scaled variables (e.g. age) can be recoded into - naturally 
ordinal - categorical variables (e.g. age-cohort), we will 
deal in this text with categorical variables only. In practice, 
the predictors z. in [5] are then always dummy variables. 
For the applicatfons these models turn out to be flexible 
enough. For instance, interactions between variables can be 
model led easily, and curvilinear relations can be taken into 
account. 

Note, however, th at Qi(1T (t» itself ~s an interval-scaled 
variable (if fixed). s 

2.2. Two simple examples 

Let's consider, for example, the following simple causal 
models. One states an effect of literacy on age at first mar­
r~age (in a female cohort, say) 

Literacy ) 
at first Marr 

The other one states an effect of literacy on fertility (num­
ber of children ever born, say) 

---~) ~~~ility J 

7 



From WFS data sets on all women (i.e. ever and never 
married women), we ean subtraet the following variates 

z. if woman i is literate; 
~ 

= 0 if women i is illiterate; 

t. age of woman ~ in eompleted years at the time of the 
~ 

survey; 

6. if woman ~ was ever married; 
~ 

= 0 if woman i was never married; 

m. number of ehildren born to woman ~. 
~ 

By grouping of the individual data, we get for eaeh recorded 
age t 

number of literate (z=l) women, aged t eompleted years 
at the time of the survey; 

number of illiterate (z = 0) women, aged t eompleted 
years at the time of the survey; 

number of literate (z=l) women, aged t eompleted years 
and ever married (6 = I); 

d 
ot 

number of illiterate (z = 0) women, aged t eompleted 
years and ever married (6 = I); 

= number of children ever born to literate women 
aged t eompleted years; 

(z = I ) , 

number of children ever born to illiterate women (z=O), 
aged to eompleted years. 

Formally d t= L 0., and m L 
z ilz.=z ~ zt i\z.=z 

tf:t \:ot ",,= 

m •• 
~ 

Then, the ratios d In and m In are observed estimates of 
I zt zt zt zt 

~(t+2;z), where n(t;z) represents the age at first marriage 

pattern respeetively the fertility pattern in subsample z. 

The GESLIRM is perfeetly designed to fit a model to this 
kind of data i.e. to data where information on the variabie 
of interest is recorded by means of sequences of eumulative 
eounts or proportions (e.g. data on age at first marriages 
are given as a sequenee n t,d

zt 
(t=t , ••. t

l
) of eounts, two 

at eaeh age t between so to and tI?' 

In these examples we used eurrent status data. It will 
be shown later how retrospeetive data ean be used equally weIl. 
Note also that the fertility data and nuptiality data have 
been treated in the same way, although they colleet informa­
tion on very different kinds of events. More speeifieally, 
the fertility data are on a renewable event (i.e. birth of a 

8 



child), while the nuptiality data are on a non-renewable event 
(i.e. first marriage). More details about these types of data 
- their differences and similarities - are discussed later on. 

2.3. Interpretation of parameters and models 

It is not always obvious how to give a demographic inter­
pretation to the parameters of the models. Of ten, we need to 
transfarm them into a set of parameters which are more suitable 
for interpretations. 

Roughly speaking, we can consider a group of "shape" para­
meters, a group of "scale" parameters and a group of "location" 
parameters. Since it is hard - or even impossible - to eive a 
general outline for interpretations, we shall discuss only a 
few simple examples (other examples may be found in the appli­
cations - sections later on). 

Let's consider the following situation 

from which it follows that 

+ + 
8 t + 6 

+ + 
where 8 = 8.a

2 
and 6 = 6 

+ + . 
8 and 6 are respect~vely 
time t. This follows from 

+ 8.a
l
. It is then easy to see that 

a sca e and a location parameter of 
the following equations 

-+ -+ 
8 t + 6 

+ 
8 

t - a 

k 

+ 
+ 6 

+ -+ + -+ -+ + 
where k = 8/8 and a= «(3 - 6 )/8. ~hus,!Ç change in 6 ~m-
plies a shift of time t, and a change ~n 8 implies ascale 
transformation of time t. 

Similarly, if we define "standard-time" t s by t s := 

al + a t, then a change in 8 implies ascale transformation of 
standa?d-t~me tand a change in Simplies a shift of 
standard-time tS. This can also be extended to more general 
cases (i.e. non!parametric standard TI (t), or parametrie stan­
dard TI (t) but a * 1 and/or a

4 
* 1) ~ define standard-time t = 

s 3 S 

1>(TI (t)). 
s 
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However, since such interpretations always use a concept 
of "time", we use in this text a more obj~ctive terminology. 
We shall simply speak of "slopes" 8 (or e ) and "intercepts" 
B (or B+), having in mind the regression of ~(TI*(t» on 
<jl(TI (t». 

s 
Now, in general, TIit(t)=C-1TI(t). Under the assumption that the stan­

dard TI (t) is normalized (i.e. C =1 or TI*(t)=TI (t)l c is simply a scale pa­
ramete~ for the distribution its~lf. Thîs par~eter, however, needs more 
attention, as it follows from the following discussion. 

First, note that the normalizing assumption (section 1.3) 
implies that TI(t;z)~ C(z) if t~+oo for all populations z; 
also TI*(t;z)-+1 if t~+oo. In analyses of nuptiality in a female 
cohort, where TI(t;z) is the proportion of women ever married by 
age t, C(z) is cal led the "uItimate proportion marrying". 
In breastfeeding analyses, C(z) is the "uItimate proportion of 
weanlings". And in fertility analyses, C(z) is usually cal led 
the "total fertility". 

Now, in analyses of fertility, one of ten considers an age 
T (usually 50 years) af ter which definitely no more births will 
be recorded. The existence of such a cut off age T is of 
course justified by the fact that the menopause falls between 
ages 40 and 50 years. Hence, the reproductive period is defi­
nitely ended by age 50 (=T). Similarly, one may find that a 
woman cannot give her child the breast af ter T months (e.g. 
48 months), simply because she can no longer produce milko 
In practice, investigators use these facts by considering only 
women aged under 50 years (in fertility analyses) or children 
born less than 48 months before the survey (in breastfeeding 
analyses). Moreover, in fertility analyses one has almost 
always worked explicitly with TI (T) = 1 (e.g. Booth, 1979; 

* s Zaba, 1981), and hence TI (T;z) = 1 or n(T;z) = C(z) for all 
populations z which are related to the same standard TI (t). 
In breastfeeding analyses, however, one does not so, a~d in 
nuptiality analyses the existence of a cut off age T may 
even be doubtful. 

Thus, in certain instances, the existence of a cut off 
time T can be very weIl justified on biological grounds. 
We shall now discuss, however, situations wherein it might be 
less realistic to consider a cut off time T(4). For instance, 

(4) It is assumed implicitly that the cut off time T is such 
that TI (t)<1 for all t<T and TI (t) = 1 for all • Hence, 
T is tlie smallest cut off time; and it is so in all popula­
tions. In other words n*(t;z)<l for all t<T and n*(t;z)=l 
for all t~T, and for all Z. 

la 



if breastfeeding is prolonged, one may record weanings still at 
ages 45, 46, 47 (if T 48 months). If breastfeeding is not 
prolonged, on the other hand, then it is quite possible that 
all children are weaned by a much smaller age (e.g. 24 months) 
Rence, for two different populations the cut off point may be 
different. Similar situations can be met in fertility ana-
lyses in one population, births may be recorded at ages 35 
and above, while in another population all births may be recor­
ded before age 30. 

The conclusion is that a universal cut off time T may be 
justified on biological grounds, but not on non-biological 
(e.g. socio-economie) grounds. The solution to the problem 
is fairly simpIe. Indeed, we shall not work explicitly with 
a time T for which TIs(T) = 1 (and hence TI*(T;z) = 1 for all z; 
see also footnote (4». On the contrary, we assume that TI Ct) 
<1 for all fini te t, and hence TIft(t;z)<I or TI(t;z)<C(z) fo~ all 
finite tand for all z. Cut off times can then still be defi­
ned. For instanee, one considers a time T so that TI (T )=.99, 
and times T so that n*(T ;z)=.99 or n(T ~z)=.99C(z)~ Such a 

ffz, . z 1 . Z d new cut 0 po~nt var~es across popu at~ons ue to non-
biological differences. The existence of a universal biologi­
cal cut off time T is still interesting. For instanee, one 
knows that womanls reproductive history is complete if she 
is followed up to age 50. Thus, older women do not offer more 
information on fertility than women under age 50 do, and so 
they need not to be included in the survey. 

Interpretation of other parameters (mI' m2 , 0:
3 

and 0: 4 ) is 
even less obvious. Briefly, we shall refer to these as "shape" 
parameters, only to distinguish them from scale and location 
parameters. They are, however, interesting for general inter­
pretations of the model. I.e. special values of these para­
meters imply special nice properties of the model. Examples 
are found in Appendix Table A.2. 

1 1 



3. THE DATA 

3.1. General format 

The data for which a relational model is designed should 
be of the form : 

[d zt ' n zt ' t, z] 

or of the form : 

where 

z = (z I" •• z ) is a vector of dummies 
represen~ing some characteristics 
vidual subjects; 

t duration; 

[ 6 al 

[ 6 b] 

(section 2.1). 
of a sample of indi-

n 
zt 

number of individual subjects in sample z, observed 
during time t; 

number of events experienced during time t by the n zt 
subjects in sample z; 

d In . zt zt 

The duration variable t measures the time between two 
events, e.g. the event of becoming at risk and recording the 
data. Of course, t could be an exact variate, but as we are 
concerned here with analyses of WFS data, we shall only consi­
der duration variables t measured in completed units (e.g. 
years, months). Then, an event recorded as taking place at 
time t, in fact takes place somewhere in the interval of unit 
length [t,t+l). 

The following sections will deal with the derivation of 
data in format [6] from WFS surveys. 

3.2. Renewable and non-renewable events 

This text is intended partially to show similarities be­
tween renewable and non-renewable events. More specifically, 
estimation of the parameters of the relational model for data 
on renewable and non-renewable events shows no basic differen­
ces. However, there are important differences between them in 
obtaining the appropriate data (in format [6]). This will be 

I 2 



made clear in the next sections. Here, we will only mention 
some differences in the terminology. 

When dealing with non-renewable events (e.g. first marri-
age, weaning of a child, ... ) the ratio p is an observed esti-
mate of the probability that an individu~t with covariates z 
has experienced the event by time t. For instance, in a nup-
tiality analysis p is the probability that a woman with 
characteristics z ffiäries before age t. Note that O<p <lor, 
equivalently, O<d <n z1: 

zt zt 

When dealing with renewable events (e.g. births, marr~a­
ees, ... ), an individual may experience the event more than once 
during time t. Hence, p is the mean number of events exper-
ienced by the n indiviaUals. For instance, in a fertility 
analysis p t isZthe mean number of children born to the n 
women withZcharacteristics z in their first t years of lir~. 
Note that d can be larger than n , or that p can be larger 
than 1. zt zt zt 

Thus, we speak of "probabilities" if the data are on non­
renewable events, and we speak of "mean numbers" if the data 
ar~ on renewable events. 

3.3. Data on non-renewable events 

3.3.1. Introduction 

We shall proceed as follows in the derivation of data in 
format [6] from WFS surveys. First, a cross-tabulation is 
const.ructed. From this, two types of data (both in format [6]) 
are easy to subtract. As they result, in fact, from two life 
table techniques, they are compared with the more common 
actuarial life table technique. 

Since one of the techniques, as weIl as the actuarial life 
table technique, uses retrospective data (i.e. retrospectively 
reported durations or ages), we assume throughout this discus­
sion that retrospective information is recorded. If such data 
are not available, a cross-tabulation cannot fully be construc­
ted, and one is then obliged to use the current status techni­
que (which is the other technique to be discussed in what 
follows) • 

In the following sections, we use the terminology of 
nuptiality analyses. Of course, the discussion applies also 
to breast-feeding, post-partum abstinence and any other analy­
sis of non-renewable events. 

Finally, we shall omit covariates z from the notations, 
since the techniques discussed here are applicable to separate 
samples only. 

1 3 



3.3.2. Cross-tabulations and life tables 

We consider a cohort of women whose age at the date of 
interview (i.e. current age, or CA) lies between YO and Y

I
, 

and whose age at first marriage (AM) lies between Xo and xl 
(if they are ever married)(5). Then, we can construct a cross­
tabulation as shown in Fig. land the definitions below. 

FIG. CROSS-TABULATION FOR NON-RENEWABLE EVENTS 

xO"············ .. ,.x .•....• , .....• ,x I 

n 
Jo 

y • _ m 
yx 

n m w ..••• m ..... , 
+x 

We define 

m = number of women wi th CA Y and Al'1 X; 
yx 

w 
y 

number of never married women with CA y. 

The following marginals can then be computed(6) 

(5) 

(6) 

1 4 

As mentionned in section 3.1, all ages (CA and AM) are 
measured in completed years. Thus, "with AM x" means 
married in the unit interval [x,x+l). Note also that 
X 0 ~y 0 ~y 1 = x I 

In fact, for the marginals m + the summation should be from 
Xo to y. However, by a simpte extension of the cross-tabu­
lations with cells with zero entries, the summations are 
correct. 



m y+ 

m 

n 

w 

n 

= 
Y 

== 

m 
x=x yx 

o 

Yl 
~ m 

Y=YO 
yx 

Y 1 
~ m 

Y=Y O 
y+ 

m + w 
Y Y 

Y1 
~ w 

Y=Y O 
Y 

Y j 
~ n 

Y=Y O 
Y 

number of ever married women with CA Y; 

number of women with AM x; 

x j Y j x j 
~ m ~ ~ m +x yx x=x

O Y=Y o x=xO 
number of mar-

ried women; 

number of women with CA Y; 

number of never married women; 

number of women 1n the sample. 

m + W 

Further, we define some cumulative counts 

d 
yx 

d ' yx 

m ys 

d - m 
yx yx 

number of women with CA Y and AM less than 

or equal to x (completed years); 

x-j 
~ m 

s==x ys 
o 

number of women with CA y and 

AM less than or equal to x-j 

(completed years). 

Now, if ~(t;y) 1S the cumulated proportion of women mar­
ried by exact age t in a cohort aged y, we have 

cl yx 

n 
y 

estimates ~(x+j ;y) if x<y, [ 7 al 
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d 
yy 

n 
Y 

dl 
yx 

n 
Y 

1 
estimates n(Y+ï;Y)' 

estimates n(x;y) for all x~y 

[ 7 b] 

[ 7 c] 

Note that [7a] and [7c] are the same, but we distinguished them 
for later purposes (i.e. when several sigle year cohorts are 
grouped). In fact, it is easier to work with counts dl than 
counts d yx 

yx 

Next sections will deal with the problem of grouping of 
single year cohorts and with the computation of life table 
estimates for the proportion net) of women married by exact 
age t in the cohort of women aged yO to Y1' 

Complexity in grouping single year cohorts 1S due to 
"progressive time censoring"(7). In the above problem of 
estimating patterns n(t;y), only simple "time censoring" was 
met. We shall discuss three life table methods for (progres-
sively) time censored data the current status (CS) method, 
the actuarial (ACT) method and the retrospective zero-one (Ral) 
methode The first two are well-known to demographers. The 
third method proposed in this text is intended for use with 
relational models(8). Fortunately, it shows clear similarities 
with the ACT method. 

(7) "Time censoring" is of ten cal led "Type I censoring" (e.g. 
Kalbfleisch and Prentice, 1980). Elandt-Johnson and 
Johnson (1980) use the term "truncation" instead of "time 
censoring". In this text, however, truncation refers to 
other kinds of data. For instance, nuptiality data on 
ever married women are truncated. 

(8) The Ral method (for non-renewable events) has been used 
in Vanderhoeft (1983). Unfortunately, the definitions 
we re not exact, and caused biases. 
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3.3.3. Current status life tables 

TI(t) 
from 

CS-l 

CS-2 

The CS life table estimates for the nuptiality pattern 
of a cohort of women aged yO to Yl are easily obtained 
the estimates r 7J .We have the following possibilities 

d I 

yy 

n 
y 

d 
yy 

n 
y 

[ 8] 

estimates r 9] 

The CS-2 method assumes that both exact CA's and exact 
AM's are distributed uniformly over one-year intervals. This 
assumption is not needed in the CS-l method, since the n 
women are all followed up to exact age y at least and sitice 
d' is the number of women married before that exact age y. 

yy 

However, the CS-I method is not applicable if, from the 
survey, only current status data (i.e. current age of women 
and marital status at date of interview) are available. Then, 
we are forced to use the CS-2 method. Unfortunately, the 
above assumption used in this method may have serious conse­
quences for the accuracy of the estimates if units are larger 
(e.g. 5 years). We are thinking here about possible seasonali­
ty. perhaps not in nuptiality experiences, but possibly in 
other ones. 

Note that the CS-2 method is the method used with house­
hold data (e.g. Rodriguez and Trussell, 1980). 

3.3.4. Actuarial life tables 

N 

i . e . 
that 
over 

risk 

x 

---------------------

The ACT life table method uses the numbers(9) 

m . 
+~ 

+ w 
y 

[ 10 J 

the number of women "at risk" at exact age x. Assuming 
both marriages1and exact ages are uniformly distributed 
each year, N --2w is the mean number of women exposed to 

x x 
during interval [x,x+l), and m f(N-l +x x 2 

w ) is the condi­
x 

tional probability to marry 
~arried before exact age x. 

in the interval 
Hence, we get 

[x,x+l), given not 

(9) For remarks on the summation, see footnote (6). 
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1 - TI (1 
i<x 

m . 
+~ 

----:-1--) est i mat e s n (x) 
N·--

2
w. 

~ ~ 

[ 1 1 ] 

Note that ACT and CS-2 methods use the same assumption, 
so that the same remarks on the estimates can be made. 

The ACT ,method is mentionned here only for a comparison 
with CS and ROl methods. However, no data in format [6] is 
provided by the ACT method. 

ROl life table methods of estimation are using the follow­
ing counts, which can, of course, all be found from the cross­
tabulations as in section 3.3.2 

YI Yl x-I 
d' = ~ d' ~ ~ m 

X yx ys 
y=x y=x s=xO 

Y 1 Yl x 
d ~ d ~ ~ m x yx ys 

y=x y=x s=xO 

Y1 
n' ~ n 

x Y y=x 

Hence, n' ~s the number of women with CA larger than or equal 
x 

to x, d I is the number of women among those n l women who are 
x x 

married before exact age x, and d is the number of women among 
x 

those n l wemen who are married before exact age x+ 1 • 
x 

Then, we get the following estimates 

dl 

x 
ROl-1 estimates n(x) [ 1 2] 

n l 

x 

d 1 ROI-2 
x 

estimates n(x+ï) 
n l 

[ 13] 

x 
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Again, the assumption of uniformly distributed ages and marri­
ages over each year is needed for the ROl-2 method but not for 
the R01-1 method. Hence, remarks similar to those in section 
3.3.3 can be made. Note also that [12] re duces to [7 cl for 
single year cohorts. 

The ROI-I approach ~s visualized ~n Fig. 2 • 

F IG. 2 

n m 
x x+ 

(*) n l 

x 
d' 

x 

w 
x 

w 

R01-I LIFE TABLES FROM CROSS-TABULATIONS OF NON­
RENEWABLE EVENTS(*) 

x 

yO . 
~- .- '- - - -I x - . - m 

XXO xx-II 
I 1 

I' 
I 

Im 
YI YI L lJxO -- ---

m+ m 
Xo +x m +x

1 

is the sum of counts in the boxes with full lines 

is the sum of counts ~n the box wi th broken lines 

Note that the ROI-2 method can be visualized similarly : 
d' is replaced by d , and only the bar with broken lines in 

x x 
Fig. 2 should be extended one column to the right hand side. 

ROl life tables are in fact the result of the following 
procedure. In order to get ROI-I data, having CA y and AM x (in 
completed years) we construct for each woman a sequence of 
zeros and ones (called "individual ROI-l data") as follows(lO): 

o if t';;;;:x 
[ 1 4] 

This is shown in Fig. 3. Woman 1 has current age 18 completed 
years and is not yet married. Hence, her marital status at 

(10) The lower bound for t is e.g. the minimum age at first mar­
riage in the sample; it may be lower, but it has to be 
equal for all women in that sample. 
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exact ages la, 11, ••• is coded zero. Note that she may still 
marrybefore she attains exact age 19. Woman 2 has current age 
28 completed years and married at age 21 completed years. 
Hence, her status at exact ages la, 11, ... 21 is coded zero, and 
her status at exact ages 22, 23, ... 28 is coded one. Note that 
women whose CA and AM (in completed years) are equal, are not 
considered as ever being married, by this approach. 

FIG. 3 INDIVIDUAL ROl-l DATA ON NUPTIALITY 

/ 
/ 

/ 

h-1.t 

--------~~------~L-----~~O 

,- life line for woman 2 

life line for woman 1 

The ROI-2 approach can be explained similarly. Now, for 
each woman a sequence of 0 's is constructed as follows 

t 

° if 
if x<t<y 

[ 1 5] 

Af ter constructing such a sequence for each woman in the 
sample, we sum up the 0t'S at any t over all women with the 
same current age, and so we get the counts d' (or d ). 
The counts n' are simply obtained by countingtthe nu~ter of 
women with ctrrent age y and above. 

3.3.6. Comments --------

First, we consider the estimation from truncated data. 
WFS surveys pertain for some countries to ever-married women 
only. Hence, the data on nuptiality is truncated. The reason­
ing followed in sections 3.3.2 - 3.3.5 is still appropriate, 
provided the following modifications 
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I. Cross-tabulations of retrospective 
but now w = 0 for all y. Hence: 
for all y~ 

data are still possible, 
w = 0, n = mand n = m 

y y+ 

2. For single year age cohorts (say women with CA y), we get 
estimates of the truncated distributions. For instance, 
the ROI-I method applied on the cohort aged y for which 
only truncated data is available, becomes 

d I 

yx 

n 
y 

estimates 
TI(x;y) [ I 6] 

TI(y;y) 

3. One cannot combine single year age cohorts as we did in pre­
vious sections, since the truncation time is different 
across cohorts. However, truncation of the data at the same 
time point in all cohorts would make grouping possible. 
For instance, if marriages before exact age 25 are used only, 
then we could combine cohorts aged 25 and above, and we 
could find estimates for the nuptiality pattern truncated 
at age 25. 

4. The CS method can not be applied to truncated data. 

We can show, using w. = 0 for all i<yo' that ACT and ROI-I 
. 1 ~ d d est1mates are equal at exact ages x, where x~yO' In ee • we 

have 

N 
x 

m . + 
+J 

w 
y 

m . 
+J 

+ E 
v~y 
J 0 

w 
y 

f 0 raIl x<y 0 • It follows then that, for all x<yO 

- N 
x 

x-I 
= E m+. 

j=x J o 
We have also that n' 

x 
for all x<yo 

m . 
+1 

- TI (l - --1-) 
i<x N. --2 w. 

1 1 

d', and N I - N x x- x 

N for all x<yo 
xo 

m . 
+1 

1 - TI (I - -) 

I -

i<x N. 

TI 
i<x 

1 

N. -m . 
1 +1 

N. 
1 

Hence, we eet indeed, 
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N. 1 
1.+ 

= 1 - TI 
i<x N. 

1. 

N 
x 

= ---

d' 
x 

n' 
x 

- N 
x 

It can be seen also that ACT and ROI-} estimates are close 
together if the numbers ware small. It follows thus that 
for both a single year coKort and for truncated data the ACT 
and ROl-1 method give the same estimates. 

These facts may justify the ROl method. Moreover, we note 
that ROl and CS estimates are exactly the same at the oldest 
age yo in the cohort, and are close together at ages near yO' 
Hence, at young ages, the ROl estimates are close to the ACT 
estimates, while at older ages, the ROl estimates are close 
to the CS estimates. Numerical examples will be given later on. 

To obtain data in format [6] , one can thus follow two 
different procedures the current status (life tabIe) technique 
or the retrospective zero-one (life tabIe) technique. 
Of course, which one is actually used depends on the problem 
to be investigated and on the data being available. For in­
stance, if only household data on nuptiality is recorded, then 
only the CS-2 method is applicable. If retrospective data is 
available, then both the CS and ROl method are technically 
applicable. However, it will dep end then on the accuracy of 
the data (e.g. retrospectively reported AM) and perhaps on sta­
tistical features which technique is best to be used. 

3.4. Data on renewable events 

3.4.1. Introdu ion -------

The steps followed 1.n the next sections are mainly as 
those for non-renewable events. Therefore, the discussion is 
somewhat shortened, taking over equivalent results for non­
renewable events. So we could concentrate more on special 
problems with data on renewable events. 
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The terminology of fertility (e.g. children ever born) 
analyses is used here. Another example would be an analysis 
of marriage (e.g. number of times ever married) the discus-
S10n would be completely equivalent. 

Again~ covariates z are omitted from the notations for the 
same reason as it was for non-renewable events. 

3.4.2. Cross-tabulation and lif tables 

Consider a cohort of women whose age at date of interview 
(i.e. CA) lies between yO and YI and suppose that their age at 
the birth of any of their children (i.e. AB) lies between Xo 
and xl' Again~ CA and AB are recorded in completed years, 
a~d xO~YO~YI = xl (cfr. footnote 5). Then~ the cross-tabula­
t10n of F1g. 4, according to the definitions below can be 
constructed. 

FIG. 4 

n 
yO 

n 

CROSS-TABULATION FOR RENEWABLE EVENTS 

m yO 
.yO+ 

Y -

ffi YI Yl+ 

m 

X . o 

- - ~ 

x 

m 
yx 

m -+x 

We define 

m 
yx 

n y 

Then~ we 

m y+ = 

number of children born to women with CA y when they 
had age X; 

number of women with CA y. 

can compute marginals 

Xl 

~ m 
yx 

number of children born to women with CA y; 
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m +x 

m = 

n = 

= 

Xl 

~ 

x=xO 
m 

m 
yx 

+x 

number of children born when the mother 
had age x; 

m 
y+ 

YI 
~ m 

y=y yx 
o 

number of children 
ever born; 

n 
y 

= number of women. 

Further, we define 

d = 
yx 

d ' 
yx 

x-I 
~ 

m ys 

m 
ys 

number of children born to women wity CA y, 

before they were x+I exact years old; 

number of children born to women with CA y, 

before they were x exact years old. 

It is seen that the formal representation of the data on 
fertility (in general renewable events) through a cross-
tabulation is similar to that for nuptiality (in general 
non-renewable events), except for two points 

I. The w-column 1n Fig. 3 has disappeared in Fig. 4. 

2. The n-column is no longer a column of marginals, as it was 
in Fig. 3. 

Nevertheless, if ~(t;y) is the cumulated fertility (i.e. mean 
number of children born) at exact age t for women with CA y, 
then we may consider estimations as [7a-c]. 

The problem of next sections is to find estimates for the 
cumulated fertility distribution net) corresponding to the 
pooled single year age cohorts y (YO~y~YI)' As for non-renew­
able events, CS, ACT and ROl techniques are discussed. 
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3.4.3. Current status life tables --------------------------

The CS life table technique for non-renewable events can 
simply be taken on here. Thus, [8] and [9] are still valid. 
Problems similar to those for non-renewable events arise, and 
therefore, the reader is referred to section 3.3.3. 

3.4.4. Actuari life tables 

The ACT life table technique for non-renewable events 
seems to have an equivalent for renewable events in single 
year age cohorts only. Tf we define 

H' 
yx m then ys' - TI Cl 

i<x 

m • 
yl. 

NI. 
yl. 

) 

is the probability of having a birth before exact age x, given 
there will be at least one birth before exact age y (where y 
is the age in completed years of the cohort considered). This 
probability is an estimate at t x of the truncated fertility 
distribution n(t;y)/n(y;y). Since, according to [8] (i.e. the 
CS-j method) d' In estimates n(y;y), we get finally 

yy y 

d ' 
yy 

n 
y 

m . 
yl. 

(I - TI (I - --)) 
i<x NI. 

yl. 

estimates n(x;y) [ I 7] 

An ACT life table technique for pooled single year age 
cohorts could be outlined. For instance, having 5 successive 
single year cohorts, one should have to measure both current 
age and ages at birth in units of 5 years. Then, one could 
obtain estimates as [11] , but since x is measured in units of 
5 years (e.g. x=4 means that AB is between 20 years and 25 
years), one would have estimates af ter each 5-year period only. 
Thus, the estimated fertility pattern would be less detailed 
(although it may be smoother). Such techniques would side­
track us very much, as all other life table techniques discus­
sed in this paper provide estimates af ter each l-year period . 
(if the year is the original unit of measurement). 

The method of the next section, still providing estimates 
at each year even when single year cohorts are pooled, may thus 
be very useful as an alternative method for the construction 
of life tables where the actuarial method fails. 
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o-one life t 

Counts d', d and n' are still defined as in section 3.3.5. 
Th ' x . x h x d" h b f e 1nterpretat1ons, owever, are now: 1S t e num er 0 

births before exact age x for women currefitly aged x and above; 
d is the number of births before exact age x+1 for women 
cGrrently aged x and above; n' is the number of wo men currently 
aged x and above. These defifiitions are visualized in Fig. 5. 

FIG. 5 ROSS-TABULATIONS OF RENEWABLE 

Xo x XI 

yO 
, 

n m r--- - --, 
x x x m _. • - . m 

xx-I 
m 

I . XXO I xx 

I I 

n I m . I 
Y I T m 

YI L~x.Q. y I x I _-I 

In m m 
+x

O 
+x +x

I 
( *) n' 1S the sum of counts 1n the boxes with full lines 

x 
d' 1S the sum of counts in the box with broken lines 

x 

The ROl life table estimates are then exactly as in 
formulae [12] and [13], and again the same remarks as l.n 
section 3.3.5 can be made. 

(11) From the discussion it follows that the term "zero-one" 
is not quite appropriate here. But since there are clear 
similarities between the ROl method for non-renewable 
events and the method of this section, we shall use the 
same terminology. 
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The eonstruetion of individual ROl-l data lS shown ln 
Fig. 6. 

FIG. 6 INDIVIDUAL ROl-l DATA ON FERTILITY 

/ 

----------~O~------~~~----~~O 

, 
/ 

/ 

line of woman 2 

life line of woman 1 

In Fig. 6, woman 1 has CA 19 and did have only 1 birth at 
age 16 (eompleted years). Woman 2 has CA 28 and did have 
births at ages 17, 21, 23 and 26 (eompleted years). A sequenee 
of Gt'S ean thus be eonstrueted for eaeh woman. Summation of 

GI'S at any t over all women with the same eurrent age y would 
then give immediately the eounts d' (or cl ). 

yt yt 

3.4.6. Comments 

Truneated data on renewable events ean also be eonsidered. 
If the truneation time is y, then the data would only inelude 
women who did have at least one birth before age y (for eompu­
tation of the n.' s j<'(y) and all births of those women before 
age y (for eomp-ttation of the m .. ' s, j ,i<'(j). This is eom­
pletely equivalent with truneatêJ data on non-renewable events. 
Henee, the remarks on truneated data made in seetion 3.3.6 are 
still valid here. 

The problem of seetion 3.4.4., i.e. eomputation of aetu­
arial estimates for pooled single yeareohorts, seems to be 
inherent in data on renewable events. Fortunately, it are the 
eurrent status or the retrospeetive zero-one teehniques whieh 
provide the data for our relational modeIs; aetuarial life 
table techniques are not useful to this purpose. 
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4. ESTIMATION OF THE 

The parameters of the relational models can be estimated 
through several techniques. Most commonly used are graphical 
and (weighted) least squares methods. Maximum likelihood met­
hods have become more popular in demography only recently. 

The general model involves parameters of different kinds 
intercepts S (and al)' slopes e (and a

2
), sca1e parameters C, 

shape parameters mI and m
2 

(and a 3 , a
4
). This makes it very 

hard to deve10p a general estimatlon procedure, a1though parti­
cu1ar techniques may be easi1y app1ied under special circum­
stances. For instance, (weighted) least squares and even a 
graphica1 technique is easi1y app1ied if on1y e and S have to 
be estimated. 

In the past, severa1 estimation methods have been deve10p­
ped, but they are on1y app1icab1e in special situations. 
For instance, if on1y e and S are to be estimated in alogit 
model (i.e. mI =m

2 
I, TI (t) fixed, C=I), then the minimum 10git 

x2 criterion may be u~ed. Another method, app1ied in 10git 
regression to estimate e and S, is based on maximum 1ike1ihood 
methods and the use of "working 10gits". Equivalent techniques 
were deve10pped for probit regression. The reader is referred 
to Finney (1971) for methods in probit ana1ysis, and to Ashton 
(1972) for methods in 10git ana1ysis. Zaba (1981) has deve10p­
ped a "ratio" method for ana1ysis of ferti1ity data through the 
re1ational Gompertz model (i.e. m

1
=+oo, m2=1, TI (t) fixed). 

Rodriguez and Trusse11 (1980) discussed severaî maximum 1ike1i­
hood procedures for estimation of the parameters in the Coa1e­
McNei1 nuptia1ity model. Both Zaba (1981) and Rodriguez and 
Trusse11 (1980) considered the estimation of C, a1though in 
quite different ways. 

The method being used in this paper is based on maximum 
like1ihood and derived estimation techniques, as wi1l be out-
1ined in the fo110wing paragraphs. In order to simp1ify the 
notations, on1y one (sub)samp1e is considered, so that covari­
ates z cou1d be dropped. Attention is focussed main1y on the 
estimation of the parameters e and S, all other parameters 
being fixed. 

Consider either CS-lor ROI-l data ~dt' nt' ~] or 
[Pt' nt' t] (cfr. section 3.1), where Pt lS an estlmate of TI(t). 
We may then consider the function 

L = TI 
d

t 
n -d 

TI(t) (I-TI(t» t t 
t 

which is brief1y called the 1ike1ihood function. For both CS-I 
and ROI-I data, p is the unconstrained estimate of TI(t) 
obtained by maximtzation of L or 10gL. Note that in case of 
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1 
CS-2 or ROI-2 data, net) should be reolaced by n(t+ï); then Pt 

is the unconstrained estimate of TI(t+~). If estimation of net) 

is constrained through a relational model, then 10gL is a func­
tion of the parameters e, 6, mI' m2 (and possibly al' a

2
, a

3
,a

4
) 

and is maximized with respect to the unknown parameters. As 
usual, this is done through derivation of 10gL with respect to 
the unknown parameters, equating this derivatives to zero, and 
solving the so obtained system in the unknown parameters. 

The function L needs special attention. For CS data, it is 
exactly - or at least proportional to - the conditional likeli­
hood under the assumption that each d

t 
is, conditionally on nt' 

binomially distributed with mean n .n(t). In fact, this follows 
from the independency of the sub-sàmples n at different times t. 
For ROl data the subsamples nare clearlytnot independent, 
since nt entirely covers n

t
+ 1 : Therefore~ L is not a condition-

al likelihood. Of course, TI(t)d t (l-n(t»n t -d t is still the bi­

nomial conditional probability of d response::; out of n , but the 
product over t, - which is L - is n5t the joint conctitlonal 

probability of tne random vector d
t 

given the random vector 

nt The method of partial likelihood (Cox, 1975) - of which 

the conditional likelihood method is only a special case - seems 
to provide a justification for L if ROl data are available. 
It is interesting to note here that Cox (1975) has outlined the 
construction of the partial likelihood function for "grouped 
life table data" which is similar to the ACT data (section 3). 
Having in mind the equivalence of ACT and ROl data in case of 
simple time censoring (section 3.3.6), Cox's approach might 
then be used. 

Of course, the parameters of the relational models can 
always be found as those who maximize the above function L, 
whatever the mathematical justification may be. However, 
problems arise when asymptotic (or large sample) properties 
of estimates and of likelihood (-ratio) functions are used. 
Some of these problems are for instance discussed in Andersen 
(1970) and Cox (1975). 

Maximization of L turns out to be rather easy if only e 
and 6 have to be estimated and if the GLIM (release 3) package 
is available on a computer (Baker and Nelder, 1978). The GLIM­
program has been used intensively to obtain the estimates in 
subsequent sections. We also adopted the notations used in the 
GLIM-manual to describe the "linear predictor" of the model. 
For instance, if A and Bare categorical and SST a continuous 
variate, then (AHB) .SST + B, or explicitly 
A.SST + B.SST + A.B.SST + B, means that A and B have main ef­
fects and an interaction effect on the slope and that only B 
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has a ma1n effect on the intercept. In the following sections, 
SST stands for the transformed standard schedule ~(TI (t)). 
If SST does not appear in the expression for the lin~ar predic­
tor, then it is assumed that the slope has a fixed value (usu­
ally 1). Note that the transformation ~ is called the "link 
function" in the GLIM-manual. 
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5. APPLICATION TO BREASTFEEDING DATA 

5. I. The mode 1 

A model for analysis of breastfeeding data is specified as 
follows : 

I. The transformation of the model 1S the complementary loglog 

<P(n) = log(-log(l-n)) [18a] 

Z. The transformed standard schedule is a linear function of 
log t : 

cP(TI (t)) 
s 

[ 1 8 b] 

3. The ultimate proportion of children weaned 1S 1, and thus, 
for all covariates z, one has 

C(z) = I [18c] 

Formula [18a] can be found from [Za-bl by taking ml=1 and 
the limit case m

Z 
+«>. Formula [18b] can be obtained from [3] 

by taking ai+ = 0 and the limit case a = O. Formula [18c] 
expresses tlie fact that any child wilî ever be weaned if its 
age becomes large enough. 

From [18a-b] it follows that the duration of breastfeeding 
t has aZ-parameter Weibull distribution. Log t has an extreme 
value (minimum) distribution. 

Since TI(t;z)=n*(t;z) by formula [18c], we get the follow­
ing multiple regression model for breastfeeding 

[ I 8 d] 

The remaining unspecified parameters a" 0. 2 , e. and S. are not 
independent, and we have to fix one of'the parlmetersJa z , e. 
and one of the parameters a ,S .. We have fixed al and a

2
. J 

Their values are theoretically dnimportant, but for pract1cal 
purposes a particular set of values may be preferred. We have 
taken estimates a

1
=-5.908 and a r =Z.ZI0. With these values 

[18a-b] defines a standard scheáule for breastfeeding which is 
close to the non-parametric standard obtained by Lesthaeghe 
and Page (1980) (1Z). The non-parametric standard TI (t) and 

s 

(12) In fact a
1
=-5.908 and a

2
=2.ZI0 are maximum likelihood esti­

mates, obtained by fitt1ng [18a-bl to the standard in 
Lesthaeghe and Page (1980). (Note that t is measured in 
months) 
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the estimated Weibull standard TI (t) are contrasted in Fig. 7 
and Table 1. The mean and variagce of the Weibull standard 
TI (t) are 12.83 and 37.60 respectively. 

s 

FIG. 7 PARAMETRIC AND NON-PARAMETRIC BREASTFEEDING STANDARDS 
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If the model is fitted under the constraints e.z' 1 for all 
covariates z, it can be seen from Appendix Table A.2 that the 
hazard functions À(t;z) for different z-values are proportional 
and the process of weaning is accelerated or decelerated. 
Formally, [18d] becomes 

log(-log(l-n(t;z»)=log(-log(l-TI
s
(t))+S.z' 

which is equivalent to one of the following formulae(13) 
AS. Z t 

[ 1 9 a] 

S(t;z)=S (t)e [ 19b] 
s 

S Z'A 
À(t;z)=e' À (t) 

s 

(13) S denotes the survival function 
tes the hazard function : 

d 
À (t) = logS(t) . 

dt 

32 

[ 1 9 c] 

S(t)=I-n(t), and À deno-



TABLE I : NON-PARAMETRIC AND PARAMETRIC BREASTFEEDING STANDARDS 

Duration t 
in months 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I 
1 2 
13 
14 
15 
I 6 
1 7 
18 
I 9 
20 
21 
22 
23 
24 

.02 I 

.031 

.044 

.061 

.083 
• 1 1 3 
· 149 
· I 95 
.250 
.314 
.386 
.460 
.535 
.608 
.673 
· 731 
.782 
.826 
.863 
.893 
• 91 7 
.935 

.960 

TI (t) 
s 
(RH) 

.003 

.012 

.030 

.057 

.091 
· 133 
· 182 
.236 
.295 
.356 
.420 
.483 
.545 
.604 
.660 
• 7 I 2 
.759 
.801 
.838 
.870 
.897 
· 91 9 
.938 
.953 

Duration t 
in months 

25 
26 
27 
28 
29 
30 
3 I 
32 
.13 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

1T (t ) 
s 

.969 

.976 
· 981 
.985 
.988 
· 991 
.993 
.994 
.995 
.996 
.997 
.997 
.998 
.998 
.998 
· 999 
.'999 

>.999 

TI (t) 
s 

.965 

.974 

. 981 

.986 

.990 

.993 

.995 

.997 

.998 

.999 

.999 

.999 
>.999 

(H) 1T (t) is the cumulated proportion of children weaned by age 
s 
t as given by Lesthaeghe and Page (1980, Table I) 
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A 6'Z'/&2 
n(tjz)=TI (e .t) 

s [ 1 9 d] 

[ 1 ge] 

Formulae [19b-c] show that the model is now a proportional 
hazards (PH) model, and subsample z has - relative to the stan-

dard TI (t) - a relative risk e 6 • z ' at any time t. Formulae 
s 

[19d-e] show th at the model is now an accelerated failure time 
(AFT) model, and subsample z has - relative to the standard 

TI (t) - an acceleration factor e 6.z'/&2· 
s 

5.2. Data and life tables 

The data on breastfeeding durations are extracted from 
the Kenya Fertility Survey 1977-78 (KFS). The computations 
presented in this paper are not on the entire set of 8100 women 
interviewed in the KFS, but on women residing in Central and 
Eastern provinces only (N=2585). 

In this paper, we are interested in the effect of female 
education on fertility. Two covariates have been constructed 
as follows. The individual education variabIe (lED) defines 4 
groups of women, resp. with 0 years (IED=I), 1 to 4 years 
(IED=2), 5-8 years (IED=3) and more than 9 years (IED=4) of 
education (variabIe V704 in the KFS; women for which years of 
education is not stated, i.e. V704=99, are excluded). 
The contextual education variabIe (CED) groups sampling strata 
into 3 blocks : the mean number of years of education of women 
in a sampling stratum can be less than 3 (CED=I), from 3 to 4.9 
(CED=2), or more than 5 (CED=3). Central and Eastern provin­
ces contain 25 sampling strata; according to the CED-levels 
as defined above, there are resp. 7, 9 and 9 sampling strata 
(with resp. 794, 1019 and 772 women). Combination of 4 IED­
groups with 3 CED-groups yields 12 subgroups. 

More details and an argumentation in support of these 
covariates are found in Lesthaeghe et al (1983). 

Further, the data on breastfeeding durations are on ever 
married women only. Moreover, since breastfeeding durations 
were asked for the open and the last closed pregnancy interval 
only, we only considered births corresponding to those inter­
vals. Non-live births were excluded, as weIl as children whose 
duration of breastfeeding was not stated or who were breastfed 
until they died. Finally, the analyses were restricted to 
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TAilLE 3A LIFE TABLh hSTIHATES OF THE CUMULA'.lIVh DISTRIBUTION 1T(t) OF BRhASTFEEDING DURATIONS FROM DATA ON THE mo MOST RECENT PREGNANCIES 
OF clARRIED WOMEN IN CENTRAL AND EASTERN PROVINCES(H) 

t 

1 
2 
3 
4· 
5 
6 
7 
8 
9 

JO 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

nt 

36.008 
41. 'IlO 
39.733 
41 106 
48. 970 
48. 196 
51. 056 
47. ~>74 
48. 462 
44. 554 
33.776 
56. 375 
48.968 
44. '169 
47. 292 
41.464 

56.340 
39.4,98 
:'37. B15 
38. 735 
31.256 
37. 194 
33,361 
34.663 
39.460 
46.033 
38.974 
41 555 
'71.876 
44.620 
38.610 
34. 743 
27. 184 
33. 131 
32. 140 
31.7'77 
30. 297 
36. 633 
35.937 
28.667 
77. 056 
26.804 
39. 257 
14. 509 
18.298 
19.233 
27. 143 

CS- 1 METHOD ACT METHOD RO I-I METHOD 

d' tt 

0.000 
1. 053 
2. 541 
1. 155 
1.463 
1.420 
1.843 
1625 
3. 578 
8.865 
2. 332 
8. 474 

15.325 
~22" 291 
20. 369 
17.772 
15.563 
35.474 

;;;~5. 515 
27. 545 
23. 853 
32. 1/;>7 
28.013 
31. 736 
35. 260 
41. 303 
34. 310 
38. 171 
63.008 
44.620 
36.218 
34. 743 
26.049 
31. 411 
32. 140 
31. 777 
30.297 
35.613 
32.929 
26.077 
75.019 
26. 804 
39.257 
14. 509 
18.298 
17.614 
27. 143 

(I) 
Pt 

0.000 
.025 
.064· 
.028 
.030 
.029 
.036 

034 
.074 
.199 
.069 
. 150 
.313 
.498 
.~·:H 

.429 

.551 

.630 

.787 

.674 

.711 

. 763 

.865 

.840 
9,6 

.894 

.897 

.880 

.919 

.877 
1.000 
.938 

1.000 
.958 
.948 

1. 000 
1.000 
1. 000 
.972 
.916 
.910 

974 
1.000 
1. 000 
1. 000 
1. 000 
.916 

1. 000 

Nt - 1 
1891. 335 
1851. 674 
1813.016 
1763.059 
1707.504 
1650.246 
1572.547 
1475. 149 
1399. 564 
1291. 971 
1182.666 
1111. 135 
1054. 596 
698. 803 
635.648 
550.9'76 
460.811 
394.0l.7 
353.215 
251. 868 
221. S66 
178.007 
155.598 
142.965 
134. 413 

65. 734 
58.024 
49. 486 
44. 174 
37.690 
34. 306 
22. 732 
22. 150 
19.758 
18.013 
16.878 
14. 107 
10.274 
10.274 
10.274 
9.254 
6.246 
3. 656 
1. 619 
1. 619 
1. 619 
1. 619 
1. 619 

m+ t - 1 
39. 661 

2.650 
9.100 

18. '743 
17.307 
30. 192 
50.622 
28.629 
63.869 
64.421 
38.085 
25. 372 

310. 579 
32. 130 
62. 194 
66. 0'! 1 
43. 102 
28. 102 
80,481 
19.898 
31 1 '~9 
11. 219 

6. 849 

64. 521 
5. 989 
4. 838 

.582 
2. 013 
2.066 
2. 706 

.582 
0.000 
1.745 
0, 000 
2. 190 
3.833 
O. 000 
0.000 
0.000 

.595 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

36. 008 
40.857 
36. 812 
39.951 
47. 507 
46.776 
46.956 
43. 724 
44. 884 
33. 446 
31. 165 
45. 216 
31. 025 
22.478 
24 074 
23.69;2 
12. 700 
20.866 
10. 404 
12.360 
11. 190 

5 784 
5. 027 
4, 158 
1. 721 
4. 200 
4. 730 
4.471 
1. 318 
8.868 
0.000 
2.392 
0.000 
1. 135 
.581 

0.000 
0.000 
0.000 
1.020 
2.413 
2. 590 
2.037 
0.000 
O. 000 
0,000 
0.000 
1. 619 

lP t - 1 
.979 
.999 
.995 
.989 
.990 
.981 
.967 
, '~8() 

954 
.949 
.967 
.977 
.699 
,953 
.900 
.877 
,904 
.928 
.765 
, 91 '7 
,855 
.935 
. 9~)!J 
.975 
.512 
.908 
.922 
.988 
,952 
.944 
.909 
.974 

1.000 
,912 

1. 000 
868 

.728 
1. 000 
1. 000 
1. 000 
.926 

1.000 
1. 000 
1. 000 
1. 000 
1.000 
1. 000 
1.000 

(Z) 
Pt 
.021 
.022 
.027 
.038 

048 
.065 
.096 
· 114 
· 155 
.198 
.224 
.242 
.470 

il95 
· J45 

601 
.639 
.665 
.144 
· '765 
.799 
.812 
.820 
.825 
.910 

';>19 
.925 
.926 
.929 
.933 
.939 
.941 
.941 
.946 
.946 
.953 
.966 
.966 
· ?b6 
.966 
.968 
.968 
,968 
.96B 
.968 
.968 
.968 
.968 

n~ 

1891. 335 
1855.327 
1813.417 
1773.684 
1732. 578 
1683.608 
1635.412 
1584,356 
1536.782 
1488, 320 
1443. 766 
1409.990 
1353. 615 
1304.647 
1259. 878 
1212. 586 
1171. 122 
1142.859 
1086. 519 
1047.021 
1009. 146 
970.411 
939. 155 
901.961 
868.600 
833. 937 
794.477 
748. 444 
709, 470 
667.915 
596, 039 
551.419 
512.809 
478. 066 
450.882 
417.751 
385.611 
353.834 
323. 537 
286. 904 
250. 967 
222.300 
145. 244 
118.440 

79. 183 
64.674 
46.376 
27. 143 

d' 
t 

39.661 
42.311 
50. 358 
66. 180 
82.3:32 

111.061 
160.263 
184. 792 
244.811 
305.654 
332.631 
355.392 
654.812 
668.999 
708.902 
7:51.775 
777. 105 
789.644 
834.651 
825, 455 
831. 139 
814.813 
796. 190 
767. 548 
802.866 
775,913 
744,991 
704.270 
671. 780 
633.609 
573.307 
529, 269 
493.051 
460.053 
434,004 
403.644 
375.337 
343. 560 
313.263 
277, 650 
244. 721 
218.644 
143. 625 
116. 821 

77. 564 
63.055 
44. 757 
27. 143 

(3) 
Pt 

.021 

.023 

.028 

.037 

.048 

.066 

.098 

.117 

.159 

.205 

.230 

.252 

.484 

.513 

.563 

. b20 

.664 

.691 

.768 

.788 

.824 

.840 

.848 

.851 

.924 

.930 

.938 

.941 

.947 

.949 

.962 

.960 

.961 

.962 

.963 

.966 
973 

.9'11 

.968 

.968 
,975 
.984 
.989 
.986 
.980 
.975 
.965 

1. 000 

(H) t=age of child in months; n =number of children with current age t completed months; d~ =number of children among those n who are weaned before exact 
age t: N =nun,ber of childfen atjrisk at exact age t-I: TI: _l=number of children weane1Î if age is in [t-l,t): w _l=numbef of children censored if age 
is in [t!ï;t): ft =m 1!(N --Zw j)=probability to be t~aned af ter exact are t if not be weaned before exactta,e t-l: n'=number of children with 

I "'t-j +t- t-l t- ., (I ! t current age larger than or equal to t: d'=number of ch~ldren among those n who are weaned before exact age t; p =d' n =CS-l estimate of ~(t), 
according to [8]: p.~2)=1-. lP =ACT estlmate of 1T(t), according to [11] :\p)=d~!n~=ROI-I estimate of 1T(t), ac~ordin~\ot[12] 
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TABLE 3B LIFE TABLE ESTlMATES OF TEE CUMULATIVE DISTRIBUTION TI(t) OF BREASTFEEDING DURATIONS FROM DATA ON TEE TWO MOST RECENT PREGNANCIES OF 
MARRII!:D V;OMEN IN CENTRAL AND EASTERN PROVINCES, AND WITH CED=2 AND IED=} (.K) 

CS-} METHOD ACT METHOD ROl-l METHOD 

t d~t 
(I) (2) (3) nt Pt Nt _} m+t _} w }pt -} Pt 

n' d' Pt t-} t t 
1 4.682 O. 000 0.000 337. 581 12. 814 .962 .038 337. 581 12. 814 .038 
2 8.036 0.000 O. 000 324.767 0.000 4.682 1. 000 .038 332.899 12. 814 .038 
3 4. 524 1.054 .233 320.085 1.239 8.036 .996 .042 324.863 14.053 .043 
4 13.983 0.000 O. 000 310.810 4. 755 3.470 .985 .056 320. 339 17.754 .05::1 
5 11. 840 1.270 .107 302. 585 0.000 13. 983 1.000 .056 306. 356 17.754 .058 
6 16.643 1. 141 .069 288.602 3.263 10. 570 .988 .067 294. 516 19. 747 .067 
7 10.209 0.000 0.000 274. 769 6.952 15.502 .974 .092 277.873 25. 558 .092 
8 3.393 0.000 0.000 252.315 3. 520 9.054 .986 · 105 267.664 27. 923 .104 
9 5.387 0.000 0.000 239. 741 6.638 2.252 .972 .129 264.271 33. 420 .126 

10 6.922 2.067 .299 230.851 11. 344 5.387 .950 .173 258.884 44. 764 .173 
11 5.992 0.000 0.000 214. 120 8. 789 4.855 .958 .207 251.962 51.486 .204 
12 5.267 0.000 O. 000 200.476 5. 744 5.992 .971 .230 245.970 57.230 .233 
13 11. 134 2. 082 . 187 188. 740 55.224 5.267 .703 .459 240.703 112.454 .467 
14 9.716 4. 843 .498 128.249 3.229 7.897 .974 .473 229. 569 112.446 .490 
15 6.649 1. 155 .174 117.123 13. 539 4.873 .882 .535 219.853 121. 142 .551 
16 4. 306 2.248 .522 98.711 14. 121 5.494 .853 .603 213.204 134. 108 .629 
17 3.349 3. 349 1.000 79.096 9.372 2.058 .880 .651 208.898 141.232 .676 
18 10.296 3. 459 .336 67. 666 2. 175 0.000 .968 .662 205. 549 140. 058 .681 
19 9.018 7. 994 .886 65. 491 15.742 6.837 746 .748 195.253 152.341 .780 
20 3.480 2.241 .644 42. 912 1.090 1. 024. .974 .754 186.235 145.437 .781 
21 6.807 4.511 .663 40. 798 3.247 1.239 .919 .774 182.755 146.443 .801 
22 8.171 6.901 845 36.312 3.875 2.296 .890 .799 175.948 145.807 .829 
23 3.876 3.876 1.000 30. 141 0.000 1. 270 1.000 .799 167. 777 138.906 .828 
24 3.643 3.643 1. 000 28.871 0.000 O. 000 1.000 .799 163. 901 135.030 .824 
25 2.208 2.208 1 000 28.871 16. 153 O. 000 .441 · 911 160.258 147. 540 .921 
26 4.401 4.401 1. 000 12.718 0.000 O. 000 1.000 · 911 158.050 145. 332 .920 
27 5.958 4.677 785 12. 718 2. 163 O. 000 .830 .927 153.649 143.094 .931 
28 3. 168 3. 168 1.000 10. 555 0.000 1.281 1.000 .927 147.691 138.417 .937 
29 6.099 5.086 .834 9.274 0.000 0.000 1. 000 .927 144. 523 135.249 .936 
30 18.486 18.486 1. 000 9.274 1.013 0.000 .891 .935 138.424 130. 163 .940 
31 11. 593 11.593 1. 000 8.261 0.000 0.000 1.000 .935 119.938 111.677 .931 
32 9.070 7.842 .865 8.261 0.000 0.000 1.000 .935 108. 345 100.084 .924 
33 4. 532 4. 532 1.000 8.261 0.000 1.228 1. 000 .935 99.275 92.242 .929 
34 6.643 6.643 1.000 7.033 1. 164 0.000 .834 .945 94. 743 88.874 .938 
35 3. 348 3. 348 1.000 5.869 0.000 0.000 1.000 .945 88. 100 82.231 .933 
36 3.062 3.062 1.000 5.869 0.000 O. 000 1. 000 .945 84. 752 78.883 .931 
37 4.511 4.511 1. 000 5.869 3.610 O. 000 .385 .979 81.690 79.431 .972 
38 3.247 3. 247 1.000 2.259 0.000 0.000 1. 000 .979 77. 179 74.920 .971 
39 6.621 5.601 .846 2.259 0.000 0.000 1. 000 .979 73.932 71. 673 .969 
40 3.231 3.231 1.000 2.259 O. 000 1.020 1.000 .979 67.311 66.072 .982 
41 11.595 10.356 .893 1. 239 0.000 0.000 1.000 .979 64.080 62. 841 .981 
42 26.663 26.663 1. 000 1. 239 0.000 1.239 1.000 .979 52.485 52. 485 1. 000 
43 4.856 4.856 1.000 25.822 25.822 1. 000 
44 9.014 9.014 1. 000 20.966 20.966 1.000 
45 2.044 2. 044 1. 000 11.952 11.952 1. 000 
46 3.396 3.396 1. 000 9.908 9.908 1. 000 
47 1. 029 1.029 1. 000 6. 512 6. 512 1.000 
48 5.483 5.483 1. 000 5. 483 5.483 1.000 

(41) See Table 3A. 



TABLE 3C LIFE TABLE ESTIMATES OF THE CUMULATIVE DISTRIBUTION TI(t) OF BREASTFEEDING DURATIONS FROM DATA ON THE TWO MOST RECENT PREGNANCIES 
OF NARRIED ImMEN IN CENTRAL AND EASTERN PROVINCES , AND ~;ITli CED=2 AND IED=4 (H) 

CS-I METhOD ACT METHOD RO I-I METHOD 

t nt d' tt 
(1) 

Pt 
N

t
_

1 ID+ t _1 IPt-1 (3) n' d' 
t t P t 

1 4. 585 O. 000 0.000 32. 199 0.000 1.000 O. 000 32. 199 O. 000 0.000 
2 1. 141 0.000 0.000 32. 199 0.000 4. 585 1. 000 0.000 27.614 O. 000 0.000 
3 1 020 0.000 0.000 27.614 0.000 1. 141 1.000 0.000 26.473 O. 000 0.000 
4 1. 020 0.000 0.000 26.473 1.054 1.020 .959 .041 25.453 1.054 .041 
5 1. 164 0.000 0.000 24.399 0.000 1. 020 1. 000 .041 24.433 1.054 .043 
6 23.379 1. 141 1. 164 .950 .089 23.269 2. 195 .094 
7 21.074 1.226 O. 000 .942 .142 23.269 3.421 .147 
8 19.848 2.285 0.000 .885 .240 23.269 5. 706 .245 
9 1.053 O. 000 O. 000 17.563 0.000 0.000 1. 000 .240 23.269 5. 706 .245 

10 2.170 0.000 0.000 17. 563 1. 090 1.053 .936 .289 22.216 6. 796 .306 
11 15.420 2.170 1. 029 .854 .393 20.046 7.825 .390 
12 12.221 1. 239 0.000 .899 .454 20.046 9.064 .452 
13 2.252 O. 000 0.000 10.982 3.308 0.000 .699 .619 20.046 12.372 .617 
14 1. 141 1. 141 1.000 7.674 1. 020 2.252 .844 .678 17.794 13.392 .753 
15 3. 198 2. 144 .670 4.402 1. 164 0.000 .736 .763 16.653 13.415 .806 
16 3.238 1. 020 1.054 .624 .852 13.455 12. 291 .913 
17 1.164 0.000 0.000 1.000 .852 13. 455 12.291 .913 
18 1. 164 0.000 0.000 1.000 .852 13.455 12. 291 .913 
19 1. 164 0.000 0.000 1.000 .852 13.455 12.291 .913 
20 1.239 1.239 1. 000 1. 164 0.000 0.000 1. 000 .852 13.455 12. 291 .913 
21 1. 164 0.000 O. 000 1.000 .852 12.216 11.052 .905 
22 1. 164 0.000 0.000 1.000 .852 12.216 11. 052 .905 
23 2. 390 2.390 1.000 1. 164 1. 164 0.000 0.000 1. 000 12.216 12.216 1. 000 
24 1.053 1. 053 1.000 9.826 9. 826 1. 000 
25 1.053 1.053 1.000 8. 773 8. 773 1.000 
26 7. 720 7. 720 1. 000 
27 1.029 1.029 1. 000 7.720 7. 720 1.000 
28 6.691 6.691 1.000 
29 3. 622 3.622 1.000 6.691 6.691 1.000 
30 3.069 3.069 1. 000 
31 1.029 1. 029 1. 000 3. 069 3.069 1.000 
32 2.040 2.040 1.000 
33 2.040 2.040 1. 000 
34 2.040 2.040 1. 000 
35 2.040 2.040 1. 000 
36 2.040 2.040 1. 000 
37 1.020 1.020 1. 000 2.040 2.040 1. 000 
38 1.020 1. 020 1. 000 1.020 1.020 1 000 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

(*) See Table 3A. 
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children born within 4 years before the survey, and not born in 
the month of the survey. Thus, children's age could vary from 
I to 48 months. 

lmplications - such as selection biases - of the use of 
breastfeeding data restricted to the two most recent pregnancies 
are for instance discussed in Page et al (1982). In this paper, 
however, we are forced to use data on the two most recent preg­
nancies only. The reason is that the KFS does not provide 
breastfeeding durations for other pregnancies, and a comparison 
is to be made here between CS and ROl life table approaches. 
A ROl life table approach is only possible if breastfeeding 
durations are available for all births included in the analysis. 

The KFS is not self-weighting and provides a sample weight 
variabie (V006). Our analyses used weighted data: in general, 
the numbers n and d in sections 3.1-2 are weighted numbers 
(i.e. sums ofzindividUäl weights). Similarly, all numbers n, 
m, w, d and N (with appropriate subscripts and/or apostrophes) 
are weighted numbers or sums of individual weiBhts. The o's 
used in section 3 should be multiplied with the appropriate 
individual weight. Weighted sample sizes are shown in Table 2. 

TABLE 2 : WEIGHTED NUMBER OF BIRTHS IN SUBSAMPLES DEFINED BY 
COVARIATES CED AND lED 

lED 
I 2 3 4 TOTAL 

I 283.012 80.652 89.783 16.333 469.780 

CED 2 337.581 245.706 246.309 32.199 861.795 

3 161.228 163.358 193.106 42.068 559.760 

TOTAL 781.821 489.716 529.198 90.600 1891.335 

The weaning of a child is a non-renewable event, and hence 
the theory of section 3.3 is applicable. Thus, we constructed 
for each particular subsample of births (defined by covariates 
CED and/or lED) a cross-tabulation as shown in Fig.l, and then 
we computed CS, ACT and ROl life tables . CS-l (formula [8]), 
ACT (formula [11]) and R01-l (formula [12] ) life tables are 
shown in Table 3A for the whole of central and Eastern provin­
ces, in Table 3B for the subsample specified as CED=2 and 
IED=l (the largest one), and in Table 3C for the subsample spe­
cified as CED=2 and IED=4 (one of the smallest). The life 
table estimates of rr(t) are also plotted in Fig. 8. 
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FIG. 9 COMPLEMENTARY LOG-LOG TRANSFORMS OF BREASTFEEDING 
SCHEDULES n(t;z) AGAINST THE COMPLEMENTARY LOG-LOG 
TRANSFORM OF THE PARAMETRIC STANDARD TI (t), FOR SUB-
SAMPLES SPECIFIED BY CED AND IED(x) s 
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FIG. 9 continued 
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From the tables and the figures~ we can see that the ROI-I 
1ife tab1e estimate is close to the ACT 1ife tab1e estimate if 
the sample size is large enough and/or if the number of censo­
red cases is sma11 re1ative to the tota1 number of cases. Both 
ROI-I and ACT estimated curves are steep between ages 12 and 
13~ 18 and 19, 24 and 25~ 36 and 37. This shows the effect of 
heaping of retrospective1y reported breastfeeding durations at 
multiples of 6 months. This effect is not seen in es estimates. 
However~ es estimated curves are much more irregu1ar as a con­
sequence of sample fragmentation at different ages t. 

5.3. Ana1ysis by GLIRM's 

The genera1ized 1inear re1ationa1 mode1s for breastfeeding 
durations as discussed in section 5.1 ~ can now be fitted to 
both CS-I and R01-l data. 

Whether the mode1s wi11 fit adequate1y~ can to some extent 
be examined graphica11y. Therefore~ we have p10tted in Fig. 9 
the comp1ementary log-log transformations of the observed CS-I 
and ROI-l 1ife tab1e estimates of K(t;Z) for each of the 12 
subsamples z defined by covariates CED and lED against the 
comp1ementary log-log transformation of the Weibull standard 
TI (t). For instanee, for the subsample eED=2~ IED=4 we compu­
t~d the transformations by ~ of the observed cumu1ative propor-

. (1) (3) 
t10ns Pt and Pt shown in Tab1e 3C and plotted these against 

~(n (t» in Fig. 9h(14). The p10tted points shou1d be approxi­
mat~ly on a straight 1ine~ in order to have a good fit of the 
proposed model. Fig. 9 generally shows such 1inearity. 
Discrepancies are found main1y at the tai1s of the distribu 
tions (i.e. at 10w or at high ages) and for CS estimates, which 
are more irregu1ar by their nature. 

Thus ~ Fig. 9 indicates that the GLIRM [18d] may be fi tted ~ 
but we can a1so expect that the fit is better for R01-l than 
for CS-l data. Tab1e 4 shows some resu1ts if model [lSd] is 
app1ied to each subsample separate1y - where a subsàmp1e is 
defined by covariates CED and/or lED (or none of them if the 
who1e sample is considered). The regression 1ines are p10tted 
in Fig. 9 for each subsample defined by eED and lED. From the 
figures and the tab1e~ we see that the fit is generally better 
for ROl-I than for CS-l data: estimates from eS-l data are~ 
for instanee, more distorted by sample fragmentation. We can 

(14) If an observed proportion is O. or I. ~ the corresponding 
point is not shown in the figure since ~(O.)=-oo and 
~(l.)=+oo. 
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also see that both CED and lED have a negative effect on the 
duration of breastfeeding, with a larger effect for lED than 
for CED. A combined effect of CED and lED (i.e. an interaction 
effect) seems to be absent. 

The results shown in Table 4 could also have been found 
by fitting the multiple regression models CED*IED*SST, 
CED*SST, lED*SST and SST to both ROl-l (Panel A) and CS-l 
(Panel B) data. Other models can then be fitted too, and 
they can be compared with the above ones. Since both CED and 
lED have a significant effect on the duration of breastfeeding -
whether or not we have controlled for the other variabIe - we 
started with the "full" model CED*IED*SST and tried to simplify 
this model. Since ROI-l data are smoother than CS-l data we 
shall first discuss the selection of a parsimonious model for 
ROI-l data. 

A comparison with the model (CED+lED)*SST showed that in­
teraction effects of CED and lED (on both slopes and intercepts) 
were not significant : the largest difference between corres­
ponding estimated means was less than 2.20 months, and this 
occurred for the subsample with the smallest size (i.e. CED=l, 
lED=4). Model (CED+lED)*SST has then been compared to model 
SST+(CED+lED) the estimated means all differed less than .20 
months, showing that the effects of covariates CED and lED on 
the slopes were not significant. Then, a comparison of model 
SST+(CED+lED) with SST+(CEDHlED) again showed that the inter­
action effect of covariates CED and lED (on the intercept) was 
not significant. Next, noting that the (overall) slope in the 
model SST+(CED+lED) was estimated as .995 with standard error 
.009, we could obviously fit proportional hazards (PH) modeIs. 
A comparison of SST+(CED+lED) with the PH model CED+lED showed 
no significant differences. Further, we found also that the 
interaction effect was not significant in the PH model, but 
that main effects of CED and lED were bath significant (whether 
or not controlIed for one variabIe). Hence, a parsimonious 
model for ROl-1 breastfeeding data is the additive PH model 
CED+lED. Results from the fit of this model are shown in 
Table 5, Panel A. This table eives also results from the fit 
of the PH models CED, lED and the one wherein na effects of 
covariates are estimated. Notice that, as demonstrated 1n 
section 5.1, the PH models are AFT models as well. 

Following the same procedure, we can find a parsimonious 
model for CS-I data toa. We found that generally the same 
remarks as for ROl-l data had to be made. Thus, the PH (or AFT) 
model CED+lED adequately fitted to CS-I data. Results from 
the fit of this model and other PH (or AFT) models to CS-l data 
are shown in Table 5, Panel B. 
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TAnLE 4 

PANEL A 

CED=! 

CED=2 

CED=3 

NOT CON-
TROLLED 
FOR CED 

PANEL B 

CED=I 

CED=2 

CED=3 

NOT CON-
TROLLED 
FOR CED 

NOTES 

RESULTS FROM FITS ON RO!-I DATA 

IED= I IED=2 IED=3 IED=4 NOT CONTROL-
LED FOR lED 

----

.992(a) .946 1.165 1.388 .993 
-.710(b) -.340 -.359 -.430 .575 

17.74 (c) 15.10 14.79 14.90 16.67 
8.54 (d) 7.59 6.16 5.31 8.02 

.910 .944 1.130 I. 270 .948 
-.425 .628 -.279 .191 -.438 

15.86 17.33 14.37 12.05 15.82 
8.25 e. 72 6.16 4.65 7.94 

.925 1.220 1.108 .808 1.004 

.340 -.170 -.166 .367 -.209 
15.61 13.72 13.75 10.50 14.10 
8.00 5.49 5.99 6.08 6.72 

.937 .971 1 • 126 .985 .964 
-.521 -.437 -.250 .194 -.406 

16.50 15.73 14.21 1 1 .74 15.52 
8.36 7.72 6.11 5.69 7.67 

RESULTS FROM FITS ON CS-I DATA 

IED"'I IED=2 lED=3 lED=4 NOT CONTROL-
LED FOR lED 

1. 217 .974 2.315 .955 1. 115 
- J. 61 I -.732 -2.884 -.447 -I. 195 
23.45 18.02 23.41 15.86 20.88 

9.40 8.82 5.25 7. 90 9.05 

.994 .792 1.220 3.582 .937 
-.673 -.654 -.535 -4.389 -.607 

17.43 18.76 15.71 23.74 17.21 
8.37 11.06 6.28 3.56 8.72 

1.003 1.543 I • 164 .973 1.050 
-.610 -.947 -.283 .81 I -.412 

16.89 17.18 14.36 8.80 15.33 
8.05 5.57 5.99 4.31 7. 01 

I .031 .928 1.289 .985 .980 
-.961 -.701 -.507 .162 -.681 

19.56 18.06 15.42 11.91 17.58 
9.10 9.24 5.87 5.77 8.56 

--
(a) estimated slope ê; (b) estimated intercept S; 
(c) estimated mean duration of breastfeeding; 
(d) estimated standard deviation of duration of 
breastfeeding. 

TABLE 5 

PANEL A 

,CED=I 

CED=2 

CED=3 

NOT CON-
TROLLED 
FOR CED 

PANEL B 

CED=I 

CED=2 

CED=3 

NOT CON 
TROLLED 
FOR CED 

FITTING PH (AFT) MODELS CED+IED, CED, lED AND THE 
PH (AFT) MODEL WITHOUT COVARIATES TO BREASTFEEDINC 

RESULTS FROM FITS ON ROI-I DATA 
DATA 

IED=I IED=2 lED=3 IED=4 NOT CONTROL-
LED FOR_~ 

-.657(a) -.588 -.365 .038 -.580 
17.27 (b) 16.74 15.14 12.61 16.68 
8.26 (c) 8.00 7.23 6.03 7.97 

.743(d) .767 .848 I .017 .769 

.518(e) .556 .694 1.038 .560 
-.576 -.507 -.284 • I 18 -.468 

16.65 16.14 14.59 12.16 15.86 
7.96 7.71 6.97 5.81 7.58 

.771 .795 .879 1.055 .809 

.562 .602 .753 1.126 .626 
-.359 -.289 -.067 .336 -.208 

15.09 14.63 13.22 11.02 14. 10 
7.21 6.99 6.32 5.27 6.74 

.850 .877 .970 1. I 64 .910 

.699 .749 .935 1 .399 .812 
-.562 .454 -.216 .196 -.425 

16.55 15.76 14.15 11.74 15.55 
7.91 7.53 6.76 5.61 7. 43 

.775 .814 .907 J .093 .825 

.570 .635 .806 I. 216 .654 

RESULTS FROM FITS ON CS-I DATA 

IED=I IED=2 IED=3 lED=4 NOT CON TROL-
LED FOR lED 

-1.152 -!.121 -.678 -.180 -!. 048 
2 I .61 21.30 17.44 13.92 20.61 
10.33 10.18 8.33 6.65 9.85 

.594 .602 .736 .922 .623 

.316 .326 .508 .835 .351 
-.835 -.804 -.361 .136 -.674 

18.72 18.46 15.11 12.06 17.41 
8.95 8.82 7. 22 5.77 8.32 

.685 .695 .849 1.063 .737 

.434 .447 .697 1.146 .510 
-.587 -.556 -.113 .385 -.373 

16.73 16.50 !3.50 10.78 15. I 9 
8.00 7.89 6.45 5. I 5 7. 26 

.767 .778 .950 I. I 90 .845 

.556 .574 .893 1.469 .689 
-.921 -.785 .331 .160 -.703 

19.47 18.31 14.90 11 .94 17.63 
9.30 8.75 7.12 5.71 8.43 

.659 .701 .861 1.075 .728 

.398 .456 .718 I • I 73 .495 

(a) estimated intercept êl (b) estimated mean dura­
tion of breastfeeding; (c) estimated standard devia­
tion of duration of b tfeeding; (d) estimated ac­
celeration factor exp( /&2); (e) estimated relative 
risk exp(g) 



Both Table 4 and Table 5 show systematic differences be­
tween estimates from ROl-l data and the corresponding estimates 
from CS-l data. The differences between the estimated mean 
durations of breastfeeding are shown in Table 6. 

TABLE 6 : DIFFERENCES BETWEEN ESTIMATED MEAN DURATIONS OF 
BREASTFEEDING FROM CS-l AND ROl-l DATA, AFTER 
FITTING PH MODELS 

IED=l IED=2 IED=3 IED=4 NOT CONTROLLED 
FOR lED 

CED=l 4.34 4.56 2.30 1 • 3 1 3.93 

CED=2 2.07 2.32 0.52 -0. lO 1 .55 

CED=3 1 .64 1 .87 0.28 -0.24 1 .09 

NOT CON-
TROL LED 2.92 2.55 0.75 0.20 2.08 
FOR CED 

The higher estimated mean durations of breastfeeding for CS-l 
data can be explained as follows. Estimates of TI(t) at low 
ages t are based on recent births and hence on short periods 
only, while estimates of TI(t) at higher ages t are based on 
earlier births and hence on longer periods. Therefore, errors 
in misreporting ages may contribute relatively more in esti­
mating TI(t) at low ages t than estimating TI(t) at high ages t. 
For instance, children with low ages but already being weaned 
may be shifted to higher ages, and hence the proportion of 
weaned children is underestimated at low ages. This leads to 
an upwards bias of the mean duration of breastfeeding. 
ROl-l data seems to reduce this bias, which can be explained 
by the simple fact that the estimate of TI(t) at low ages t is 
based on both recent and earlier births, hence on short and 
longer periods (cfr. Fig. 2). Notice that the overestimation 
of mean durations of breastfeeding from CS-l data is large for 
less-educated women, but decreases with increasing level of 
education - which seems to be quite reasonable. 
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6. APPLICATION TO NUPTIALI 

6. 1. The mo de 1 

The model for analysis of age of entry into first marriage 
1S specified as follows : 

1. The transformation of the model is 

-1 
<li(TI) == F (TI) 

W 

-co 

du 

[ 20a] 

[ 20b] 

2. The transformed standard schedule is a linear function of 
age t : 

<li(TI (t)) 
s 

[ 20c] 

Formula [20b] is the limi t case mI ==+co of [2b] j <li is the 
inverse cumulative distribution function of an exponential 
reciprocal gamma variate (Appendix Table A.I). Formula [20c] 
can be obtained from [3] by taking 0.

4 
1 and 0.

3 
1. From 

[20a-c] it follows that age of entry into first marriage t 
has an exponential reciprocal gamma distribution. The model 
is precisely the Coale-McNeil model. The construction of the 
model is presented in Coale and McNeil (1972), Rodriguez and 
Trussell (1980) have discussed its application to WFS-surveys 
and Vanderhoeft (1983) reformulated it as a generalized rela­
tional model. The reader is referred to those papers for more 
technical details. 

The multiple regression model for nuptiality becomes 

* <li(TI (tjz» == (8.z')(a
1 

+ a 2 .t) + B.z ' [ 20d] 

or 

<li(1T(tjZ)/C(Z»== (8.z')(a
1 

+ a
2
t) + S.Z' [ 20e 1 

The original formulation of the model was done through 
its proper density function : 
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* f (t;z)= 
À(Z) 

r(a(z)/À(z» 

ii 
where f (t;z) 

d 

dt 

e 
-a(z) (t-t;(z) )-e -À(z) (t-t;(z» 

[ Z I ] 

* 'Ir (t;z) f(t;z) 
G(z) 

It can be shown that the original and present formulation 
are related as follows 

À(Z) [ Z Z] 

t;(z) 

A standard schedule of nuptiality is defined through[ZOa-c] 
and values of the parameters m2 , al and a

Z
' From Rodriguez and 

Trussell (1980), we obtained tue estimates m2=.604, a1=-Z.Z495 
and a

Z
=.Z88 (and c =1). This is equivalent fo À .Z88, 

s s 
a =.174 and .; =6.06. Those parameter val~es specify a standard 

s s 
~ (t) with mean 11.36 and varianee 43.36, which is close to an 
e&perically derived standard from Swedish data recorded between 
1865 and1869 (Coale and McNeil, 197Z). 

From Appendix Table A.Z it follows that the cumulative 
distribution functions satisfy the relation for "translated­
accelerated failure time" (TAFT) models : 

* 'Ir (t;z) 
t-aO(z) 

= 'Ir (----­
S k(z) 

[ Z 3] 

where new parameters a (z) and k(z) are related to the parame­
ters of the generalize9 relational model through the equations 

k (z) = 1/(8.z') 

al S . z ' 
[ Z4] 

aO(z) ( -I ) -
a Z 8 . z ' a

Z
8.z' 
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The parameters a O' k and C we re originally used by Coale (1971) 
in his model schedules of nuptiality. They can thus computed 
very easily af ter fitting the generalized relational model 
[ 20d-e] . 

The model as presented above involves essentially 4 para­
meters m2 , C, 8 and B. However, as noted by Rodriguez and 
Trussell (1980) the parameter m

2 
(which is the ratio a/À) 

should be constant. Since its value for the standard is .604, 
m2 takes this value for any population. Hence, the model in­
volves only 3 parameters C, 8 and 8, and those are equivalent 
to three parameters C, a O and k used by Coale (1971). The dif­
ference between the approach in Coale (1971) and the present 
approach (being the Coale-McNeil (1972) model) is the distribu­
tion of age at first marriage : the former does not rely on a 
specific distribution, while the latter relies on a special 
mathematical distribution function. In fact, it follows from 
Coale (1971) that this mathematical distribution function is 
common to all populations (i.e. [20a-b] with w=t and constant 
m2 =.604). lt is shown in that paper that the same underlying 
law for entry into first marriage is applicable to a large 
variety of populations. 

6.2. Data and life tables 

As for the analysis of breastfeeding, the data on nuptia­
lity are extracted from the KFS. Again, women living in central 
and Eastern provinces only are used. Both ever married and 
single women are included in the analysis in order to have 
untruncated data (section 3.3.6), making possible a comparison 
between CS and ROl approaches. Three women with recorded age 
at first marriage (VI09) of 9 completed years were excluded. 
Hence, the minimum age at first marriage is 10 completed years. 

Covariates CED and lED are defined as in section 5.2. 
The data are again weighted with the sample weight variabie 
V006. Weighted sample sizes are shown in Table 7. 

TABLE 7 : WEIGHTED NUMBER OF WOMEN IN SUBSAMPLES DEFINED BY 
CED AND/OR lED 

lED 
I 2 3 4 TOTAL 

I 355.891 110.124 156.349 35.306 657.670 
CED 2 392.803 278.201 406.799 94.662 1172.465 

3 185.635 178.027 290.037 126.538 780.237 

TOTAL 934.329 566.352 853.185 256.506 2610.372 
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As in the analyses of breastfeeding (section 5), we have 
constructed cross-tabulations for each subsample defined by 
CED and/or lED. From those cross-tabulations we have computed 
CS-I, ROI-I and ACT life table estimates of the cumulative dis­
tributions of nuptiality n(t;z), where z depends on CED and/or 
lED. Since entry into first marriage is a non-renewable event, 
the theory behind the above computations can be found in 
section 3.3. Together with life table estimates of n(t;z), we 
obtained, of course, also CS-I and ROI-I data, appropriate for 
analysis through GESLIRM~s (or GLIRM's). 

The life table estimates of rr(t), which is the cumulated 
nuptiality schedule for the whole sample of observations, are 
plotted in Fig. 10. lt is seen that ACT and ROl-1 life table 
estimates are very close, the ROI-I estimate being somewhat 
higher than the ACT estimate near the centre of the distribu­
tion. The CS-} estimate is lower than both the ACT and the 
ROI-l estimate. Assuming that women have reported their status 
of first marriage at the time of the interview without error, 
the low CS-I estimates at low ages may reflect misreporting of 
ages itself. Parti~ularly, ever married women may tend to 
overestimate their ages. 

FIG. 10 : LIFE TABLE ESTIMATES OF THE CUMULATED NUPTIALITY 
SCl!EDULE net) IN CENTRAL AND EASTERN PROVINCES (KFS) 
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Fig. Ia also indieates that almost all women residing in 
Central and Eastern provinees are ever married or will ultima­
tely marry. 

We made similar plots for all subsamples defined by CED 
and/or lED. Those for subsamples CED=2, IE~ 4 and CED=3, 
IED=I are shown in Fig. 11. If the sample size was large 
enough (see Table 7), generally the same eonelusions as for 
the whole sample eould be drawn from these plots. ROl-l and 
ACT estimates are, for instanee, almost the same in subsample 
CED=3, IED=l (Fig. 11). This was due to the small number of 
eensorings in that sample (efr. seetion 3.3.6) all women, 
exeept 1.208 with eurrent age 16 and 1.812 with eurrent age 24, 
had ever been married. The ultimate proportion of married 
women in this subsample seemed to be I. as weIl. 

FIG. 11 LIFE TABLE ESTIMATES OF THE CUMULATED NUPTIALITY 
n(t;z) FOR SUBSAMPLES z, SPECIFIED BY CED 
OF WaMEN RESIDING IN CENTRAL AND EASTERN 
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Fig. II also shows the life table estimates for subsample 
CED=2, IED=4, whieh has sample size 94.662. For sueh small 
subsamples, the estimated sehedules were more irregular. 
However, the ROI-I and ACT estimated sehedules followed eloser 
the CS-I estimated sehedule, in the sense that the CS-l sehe­
dule is no longer systematieally below the ROI-I and ACT 
sehedule. In subsample CED=2, IED=4 this is elearly due to 
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the lack of women with current age higher than 32 years : the 
R01-l estimate at low ages depends on women with higher ages 
too (cfr. Fig. 2), but here we didn't have older women. 

Estimation of life tables for subsample CED=3, lED=l made 
clear that CS data can be very poor, while ROl data can contain 
enough information for areliabIe estimation. Hence, use of 
ROl data in multiple regression may be quite advantageous. 

6.3. Analysis by GESLlRM's (or GLlRM's) 

The models to be fitted to nuptiality data essentially in­
volve 3 parameters: slopes e, intercepts 8 and ultimate propor­
tions c. Hence, we are dealing with GESLlRM's. However, visual 
investigation of life table estimates (section 6.2) indicates 
that the ultimate proportions C can be given a fixed value I. 
Thus, in [20e] we take C(z)=I, implying 1T(t;Z)=1T

ii
(t;Z) and 

GLlRM's for 1T(t;Z) itself. These models could easily been 
fitted as they involved only 2 linear parameters e(z) and 8(z). 

First we fitted the models CEDRlEDHSST, CEDHSST, lEDRSST 
and SST to both ROI-I and CS-I nuptiality data. The results 
are shown in Table 8. 

Comparison of SST+CED with CED*SST and SST+CED+lED with 
CED*SST+lED for both ROI-I and CS-l data has shown no signifi­
cant difference between corresponding estimated means. Thus, 
the effect of CED on the slopes can be ignored. Comparison 
of SST+lED with lEDHSST and SST+CED+lED with lEDRSST+CED was 
shown no significant difference between corresponding estimaterl 
means for CS-I data, but a significant difference for ROI-I 
data. Thus, the effect of lED on slopes cannot be ignored. 
Since both CED and lED seem to have significant effects on the 
intercept, we conclude that at least the model lEDiiSST+CED 
should be fitted. For ROI-I data, models lEDHSST+CED and 
lEDHSST+CEDiiIED showed only small differences between corres­
ponding estimated means. For CS-l data, those models showed 
some large differences between the estimated means. This was, 
for instance, the case in subsample CED=3, lED=1 for which the 
estimated mean in the latter model was 16.4 years, compared 
with 19.7 years in the former model. However, Fig. 11 has 
shown that the CS-I data for that subsample was very poor, 
which explains the low estimate for that subsample (see also 
the corresponding estimate of 17.64 years in Table 8). Hence, 
we conclude that the interaction effect of CED and lED on the 
intercept can be ignored. 

A parsimonious model for both ROI-1 and CS-I data is thus 
the model IEDiiSST+CED. Results for this model are shown in 
Table 9. 
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TABLE 8 

PANEL ARESULTS FROM FITS ON R01-1 DATA 

IED=1 IED=2 IED=3 IED=4 NOT CONTROL-
LED FOR lED 

CED=1 1.354(a) 1.544 2.081 1.557 1.404 
.162(b) .12tl -.97& -1.494 -.033 

19.02 (c) 18.82 20.15 22.42 19.42 
4.87 (d) 4.26 3.16 4.23 4.69 

CED=2 1.:'::95 1.548 1.904 1.452 1.422 
.125 -.031 -.942 -1.938 -.217 

19.22 19.17 20.39 23.89 19.84 
5.08 4.25 3.46 4.54 4.63 

CED=3 1.626 1.555 1.284 .957 1.418 
.263 .002 -.615 -1.139 -.258 

18.43 19.09 21.24 24.65 19.95 
4.05 4.23 5.13 6.88 4.65 

NOT CON-
~~ 

1.373 1.543 1.586 1.049 1.413 
TROLLED .163 .009 -.761 -1.296 -.179 
FOR eED 18.98 19.09 20.71 24.49 19.76 

4.80 4.27 4.15 6.28 4.66 

PANEL B RESULTS FROM FITS ON CS-I DATA 
------ ~~--

lED=1 IED=2 lED=3 lED=4 NOT CONTROL-
LED FOR lED 

CED=I I. 78& 2.009 2.292 1.966 1.961 
-.415 -1.016 -1.627 -2.330 -1.202 

19.60 20.33 20.83 22.73 20.75 
3.68 3.28 2.87 3.35 3.36 

CED=2 1.410 1.568 2.082 1.459 1.678 
-.501 -.370 -1.435 -1.979 -1.155 

20.56 19.89 20.91 23.95 21.31 
4.67 4.20 3.16 4.51 3.92 

CED=3 2.085 2.266 1.565 1.681 1.707 
.521 -1.061 -1.008 -2.458 -1.303 

17.64 20.00 21.32 24.00 21.54 
3.16 2.91 4.21 3.92 3.86 

NOt CON· ~ 1.597 1.806 1.892 1.590 1.743 
TROL LED -.346 -.687 -1.295 -2.185 -1.208 
FOR CED 19.78 20.10 21.06 23.82 21.25 

4.12 3.65 3.48 4.14 3.78 

NOTES (a) estimated slope 9; (b) estimated inter cept S; 
(c) estimated mean age at first marriage; 
(d) estimated standard deviation of age at first marriage. 

FITTING MODELS IEDHSST+CED, SST+CED AND SST+IED TO NUPTIALITY 

PANEL ARESULTS FROM FITS ON ROI-1 DATA 

IED=I lED=2 IED-3 

CED=I 1.374(a) 1.547 1.593 
.183(b) .027 -.751 

18.93 (c) 19.04 20.67 
4.79 (d) 4.26 4.13 

10.66 (e) 11.70 13.54 
CED=2 1.374 1.547 1.593 

.109 -.047 -.825 
19.12 19.21 20.84 
4.79 4.26 4.13 

10.85 11.87 13.71 
CED=3 1.374 1.547 1.593 

.239 .083 -.695 
18.79 18.92 20.55 
4.79 4.26 4.13 

10.52 11.58 13.42 
SST+IED 1.430 1.430 1.430 

.166 .008 .714 
18.89 19.27 21.02 
4.60 4.60 4.60 

10.95 11.33 13.08 

PANEL B RESULTS FROM FITS ON CS-I DATA 

IED=I IED=2 

CED=I 1.594 1.802 
-.372 -.723 

19.85 20.17 
4.13 3.65 

12.72 13.87 
CED=2 1.594 1.802 

.328 -.679 
19.75 20.09 
4.13 3.65 

12.63 13.78 
CED=3 1.594 1.802 

-.289 -.640 
19.67 20.01 
4.13 3.65 

12.54 13.71 
SST+IED 1.765 1.765 

-.525 -.669 
19.85 20.14 
3.73 3.73 

13.42 13.70 

NOTES (a)-(d) see Table 8; 
(e) estimated origin aO 

lED=3 

1.892 
- 1.343 
2\.15 
3.48 

15.15 
1.892 

-1.300 
21.07 
3.48 

15.07 
1.892 

-1.261 
21.00 
3.48 

15.00 
1.765 

-1.221 
21.22 
3.73 

14. 7~9 

IED=4 SST+CED 

1.057 1.416 
-1.308 -.033 
24.47 19.40 
6.23 4.65 

13.72 11.38 
1.057 1.416 

-1.382 -.216 
24.71 19.85 

6.23 4.65 
13.96 11.82 
1.057 1.416 

-1.252 -.259 
24.28 19.95 
6.23 4.65 

13.53 ll.93 
1.430 

-1.432 
22.77 
4.60 

14.83 

IED=4 SST+CED 

1.587 1.747 
-2.234 -1.073 
23.93 20.98 
4. I 5 3.77 

16.78 14.47 
1.587 I. 747 

-2.191 -). 199 
23.84 21.23 
4.15 3.77 

16.68 14.72 
1.587 I. 747 

-2.152 -1.333 
23.75 21.49 

4.15 3.77 
16.60 l"·~ ---

1.765 
-2.370 
23.48 
3.73 

17.05 



In fact, the effects of covariate lED may be due mainly 
to the differences between subsamples with IED=4 and IED=l,2 or 
3. Since subsample IED=4 only contains less than 10% of the 
observed women, the effect of lED may be doubtful. lf subsample 
IED=4 is omitted from the analysis, much simpler parsimonious 
models may be detected. 
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7. APPLICATION TO LIFE TIME FERTILITY DATA 

7. 1. The mode 1 

The model for analysis of life time fertility data is 
specified as follows : 
1. The tranformation of the model is the inverse cumulative 

Gompertz distribution 

<I>(TI)=-log(-logTI) [ 25a] 

2. The (normalized) standard schedule TI (t) ~s derived by 
Booth (1979). It is shown in Table To. 

TABLE 10 NON-PARAMETRIC STANDARD OF FERTILITY 

AGE t TI (t) AGE t TI (t) AGE t TI (t ) 
s s s 

10 24 .32829 38 .88354 
1 1 .00000 25 .37731 39 .9081 6 
1 2 .00000 26 .42597 40 .93019 
13 .00002 27 .47371 41 .94925 
14 .00045 28 .52013 42 .96480 
15 .00313 29 .56517 43 .97698 
1 6 .01168 30 .60861 44 .98591 
1 7 .03043 31 .65016 45 .99188 
1 8 .05826 32 .68968 46 .99555 
1 9 .09428 33 .72722 47 .99782 
20 .13584 34 .76275 48 .99915 
21 .18187 35 .79618 49 .99982 
22 .22993 36 .82751 50 
23 .27897 37 .85663 

FormuIa [25a] can be found from [2a-b] by taking 
m

2
=1 and the limit case m

1
=+oo (cfr. Appendix Table A.l). 

S~nce a non-parametric standard schedule is used, t has na 
specific (mathematical) distribution. However, "standard-time" 
<I>(TI (t» (section 2.3) has a Gompertz distribution, which 
follows from [a] and the relation 

<I> ('Ir*( t ; z ) ) = ( 8 . z ' ) . <I> (TI (t» + S . z ' 
s 

or <I>(TI(t;z)/C(z»=(8.z').<I>(TI (t»+B.z' 
s 
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The mean age at childbearing in the standard schedule is 
28.28 years, and the varianee of age at childbearing t is 52.70. 

7.2. Data and life tables 

The data on life time fertility are, as those on breast­
fee ding and on nuptiality, extracted from the KFS. The same 
women sample as for nuptiality analyses is used here, except 
that now also the three women with reported age at first marri­
age of 9 years are included. 

The data are again weighted with the sample weight variable 
vo06. Covariates CED and lED are defined as in section 5.2. 

Since we are dealing with a renewable event, the techniques 
of section 3.4 were used for the construction of cross-tabula­
tions, life tables and CS-I and ROI-I data. The CS-l and 
ROI-1 life tables for the whole sample are shown in Table 11. 
Notice that ACT life table estimates could not have been compu­
ted, since several age-cohorts of women had to be pooled 
(section 3.4.4). The CS-l and R01-l life table estimates of 
the cumulated fertility in the whole sample of women residing 
in Central and Eastern provinces are plotted in Fig. 12. 
The estimates of the cumulated fertility for women in the sub­
samples defined as IED=I, IED=2, IED=3 and IED=4 are plotted 
in Fig. 13. 

FIG. 12 LIFE TABLE ESTIMATES OF THE CUMULATED FERTILITY 
SCHEDULE ~(t) FOR WOMEN RESIDING IN CENTRAL AND 
EASTERN PROVINCES (KFS) 
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TABLE II LIFE TABLE ESTIMATES OF TEE CUMULATED LIFE TIME FERTILITY net) FROM DATA ON WOMEN IN CENTRAL AND EASTERN 
PROVINCES ( .. ) 

CS-I METHOD ROI-I METHOD 

t d' 
(I) 

n' d' (3) 
nt tt Pt t t Pt 

10 - - - 2613.342 0.000 0.000 
11 - - - 2613. 342 3.685 .001 
12 - - - 2613.342 18.627 .007 
13 - - - 2613.342 46.013 .018 
14 - - - 2613.342 104.636 .040 
15 157.603 .595 .004 2613.342 196.006 .075 
16 143.284 5.393 .038 2455.739 373.334 .152 
17 101. 819 13.440 .132 2312.455 585.341 .253 
18 123.828 36. 757 .297 2210.636 944.451 .427 
19 112.361 67.048 .597 2086.808 1344.663 .644 
20 88.036 76.812 .873 1974.447 1788.464 .906 
21 69. 707 99.903 1.433 1886.411 2277. 795 1.207 
22 73.682 102.226 1.387 1816. 704 2762. 793 1.521 
23 82.287 126.652 1. 539 1743.022 3261. 920 1. 871 
24 73.614 166.601 2. 263 1660.735 3734. 750 2.249 
25 115.434 293.234 2. 540 1587. 121 4124.220 2. 599 
26 54. 513 164.984 3.027 1471. 687 4349. 789 2.956 
27 80. 752 275.930 3.417 1417.174 4677. 578 3. 301 
28 103.283 423.035 4.096 1336.422 4877. 556 3.650 
29 87.961 376.375 4.279 1233. 139 4892. 548 3.968 
30 106. 190 517.405 4.872 1145. 178 4903.854 4.282 
31 44.429 211.977 4.771 1038.988 4751. 390 4. 573 
32 77.908 421.862 5.415 994. 559 4853.898 4.880 
33 42.228 246.670 5.841 916.651 4751. 992 5. 184 
34 65.053 427.006 6. 564 874.423 4799. 552 5.489 
35 100. 156 613. 143 6. 122 809. 370 4635.881 5. 728 
36 43.694 293.922 6. 727 709.214 4234. 759 5.971 
37 77.008 521.659 6. 774 665. 520 4144. 533 6.228 
38 70. 585 483.821 6.854 588. 512 3797.903 6.453 
39 43. 763 300.698 6.871 517.927 3447. 590 6.657 
40 76.008 561. 116 7.382 474. 164 3265. 160 6.886 
41 46.090 315.226 6.839 398. 156 2792.175 7.013 
42 35. 158 277.014 7.879 352.066 2565. 500 7.28·7 
43 22.661 174.273 7.690 316.908 2353.883 7.428 
44 22.281 156.644 7.030 294.247 2228.990 7. 575 
45 71. 087 610.936 8. 594 271. 966 2113.473 7. 771 
46 45. 182 329. 107 7.284 200.879 1526.402 7. 599 
47 47. 596 392.388 8.244 155.697 1207.993 7. 759 
48 43.832 307.385 7.013 108. 101 816. 107 7. 549 
49 39. 531 306.272 7. 748 64.269 508. 722 7.916 
50 24. 738 202.450 8. 184 24. 738 202.450 8. 184 

t=age of woman; nt-number of women wlth current age t completed years; d'tt=number of chl1dren born to those n 
women before exact age t; n' =number of women w ~ th r.urrent age larger than or equal to t; d' =number of children t 
born to those n~ women befofe exact age t; p~I)=d~t/nt = CS-I estimate of net), according Éo [Bl ; 

p(3)= d' In' = ROI-I estimate of net), according to [12l • 
t t t 
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LIFE TABLE ESTIMATES OF THE CUMULATED FERTILITY 
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These plots show that the ROI-I life table estirnate is 
close to the CS-I estimate. If the sample is large enough, 
then the ROI-I estimate is also smooth and regular, except at 
the upper tail where it tends to the CS-I estimate. 
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7.3. Analysis by GESLlRH's or (GLlRM's) 

The model defined in section 7.1 can now be fitted to 
CS-l and to ROl-l data. The model essentially involves 3 para­
meters e, S and C. However, C will be fixed, and e and S will 
then be estimated applying a GLlRM to the series 
* n (t;z)=n(t;z)/C. 

Fig. 12 and Fig. 13 show that the life time fertility 
schedules are to some extent flattened at the end of the age 
range. lt is believed that this is mainly caused by omission 
of births, i.e. women tend to omit births of children who moved 
away or died, and this omission-error increases with age of 
women (Brass, 1980). Hence, older women underestimate their 
current fertility. Consequently, total fertility will also be 
underestimated. However, we can extrapolate the smooth ROl-l 
curves in Fig. 12 and Fig. 13 by hand - ignoring the data 
points at higher ages - and so we get a more reasonable idea 
about the total fertility C. lt is seen then that C is larger 
than 8. Although this value of C may be somewhat low, we have 
used it in further analysis of the data, which is intended to 
demonstrate the methodology, rather than to obtain extremely 
accurate results. 

* With fixed C=8.00, we normalized the ~ata as follows . 
n =8.00 n Then, the GLlRM [25b] for n (t;z)=n(t;z)/8.00 

zt zt 
is fitted to the data [dzt ' n:

t
, t, z] (cfr. section 3.1). 

Notice that : n is the number of women with covariates z 
zt 

and current age,t completed years (when dealing with cs data) 
or larger (when dealing with ROl data); d is the number of 
births those women already had before ageZt; and n* is the 
number of births those women would have ultimatelyZtf they 
would all attain the total fertility level of 8.00. 

First, we fitted the GLlRM's CED*IEDHSST, CED*SST, 
lED~SST and SST to both CS-l and R01-l data. Results are 
shown in Table 12. Looking at the estimated mean (or median) 
ages at childbearing, it is difficult to see the effects of 
CED and lED. This may be due to the fact that the estimates 
for samples containing less educated women (IED=l, and lED=2) 
are biased because of the above mentionned ommission-error. 
lndeed, samples with lED=1 (and lED=2) contain most of the 
older women, causing an underestimation of the level of ferti­
lity at high ages or, equivalently, causing an upwards bias 
for the mean (or median) age at childbearing. Notice, 
however, that the bias is more serious for ROl than for CS data. 
This can be explained by the fact that the ROl estimates at 
low ages too depend on data for older women. 
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PANEL A : RESULTS FROM FITS ON ROl-I DATA 

lED=! lED=2 lED=3 lED=4 NOT CONTROL-
LED FOR lED 

CED=I .640 (a) .869 1.1l3 .753 .687 
-.296 (b) .048 -.049 -.261 -.262 

31. 72 (c) 28.95 28.31 30.91 31.26 
9.03 (d) 7.90 6.72 8.31 8.74 

32.20 (e) 28.38 27.62 30.94 31. 94 
CED=2 .762 .841 .988 .811 .835 

-.094 -.093 -.110 -.538 -.116 
29.64 29.34 28.99 32.53 29.52 
8.50 8.01 7.22 7.50 8.02 

29.32 28.89 28.43 32.82 29.12 
CED=3 .835 .963 .970 1.134 .928 

-.141 -.059 -.124 -.238 -.127 
29.69 28.74 29.13 29.31 29.28 

7.99 7.39 7.30 6.49 7.50 
29.34 28.12 28.60 28.80 28.79 

NOT CON- .727 .886 1.001 .'i10 .817 
TROLLED -.177 -.073 -.107 -.314 -.160 
FOR CED 30.41 29.06 28.93 30.31 28.89 

3.61 7.78 7.17 7.09 8.07 
30.34 28.52 28.35 30.02 29.60 

PANEL B RESULTS FROM FITS ON CS-1 DATA 

IED=1 lED=2 IED=3 lED=4 NOT CONTROL-
LED FOR lED 

CED=I .481 .894 1.084 .891 .687 
.019 -.107 -.068 -.309 -.168 

29.98 29.26 28.49 30.60 30.53 
11.04 7.70 6.83 7.47 8.90 
30.16 28.77 27.82 30.41 30.55 

CED=2 .7813 .859 .977 .906 .980 
.044 .023 -.141 -.442 -.106 

28.55 28.49 29.21 31.38 28.99 
8.48 8.03 7.25 7.21 7.27 

27.88 27.81 28.70 31.34 28.43 
CED=3 .487 1.202 .909 .965 .980 

.317 .011 -.136 -.448 -.122 
27.19 27.80 29.40 31.15 29.08 
11.27 6.41 7.59 6.93 7.25 
25.58 27.03 28.94 31.00 28.54 

NOT CON- .638 1.009 .984 .953 .913 
TROLLED .068 .012 -.124 -.410 -.126 
FOR CED 28.85 28.19 29.08 30.97 29.32 

9.63 7.23 7.23 7.04 7.58 
28.32 27.45 28.54 30.80 28.85 

estimated (b) estimated intercept Sj (c) estimated mean age (a) jlope ê; 
estimated standard deviation of age at childbearing; 
age at childbearing. ' 

at childbearing; 
(e) estimated 

: FITTING THE MODEL (CEDKSST).SST+IED TO FERTILITY DATA 

PANEL A : RESULTS FROM FITS ON R01-1 DATA 

IED=I IED=2 lED=3 lED=4 

CED=I .641 (a) .856 1.070 .718 
.178 (b) -.076 -.108 -.319 

30.84 (c) 29.18 28.75 31;52 
9.23 (d) 7.95 6.86 8.43 

31.04 (e) 28.68 28.14 31. 77 
CED=2 .752 .845 .989 1.008 

-.178 -.076 -.108 -.319 
30.30 29.21 28.97 30.19 
8.45 8.01 7.22 6.92 

30.17 28.73 28.41 29.86 
CED=3 .834 .961 .979 1.073 

-.178 .076 -.108 -.319 
29.95 28.86 29.00 29.96 
7.95 7.39 7.27 6.65 

29.66 28.27 28.44 29.57 

PANEL B RESULTS FROM FITS ON CS-I DATA 

lED=1 IED=2 IED=3 IED=4 

CED=I .463 .914 1.049 .806 
.076 -.012 .128 -.423 

29.53 28.58 28.92 31.78 
11.32 7.69 6.93 7.73 
29.48 27.92 28.35 31.94 

CED=2 .775 .867 .982 .923 
.076 -.012 -.128 -.423 

28.36 28.71 29.12 21.19 
8.60 7.95 7.24 7.16 

27.63 28.09 28.58 31.09 
CED=3 .574 1.209 .912 .985 

.076 -.012 -.128 .423 
29.02 27.91 29.34 30.91 
10.19 6.37 7.58 6.89 
28.60 27.17 28.87 30.72 

NOTES : !) : see Table 12 



On the whoie, lED seems to have a (slight) increasing 
effect, while CED has a (slight) decreasing effect on the 
mean (or median) age at childbearing, and an interaction effect 
may be present as weIl. More obvious, however, are the nega­
tive effects of both CED and lED on the standard deviations 
(or variances) of age at childbearing. This may be explained 
by the fact that more educated women start having children at 
later ages than less educated women do. 

Other models have been fitted and compared with the above 
ones. The model (CED*lED)~SST+lED may provide an adequate fit. 
Thus, most significant are: a ma in effect of lED on the 
intercept, a main effect of both CED and lED on the slope, and 
an interaction effect of CED and lED on the slope. (Results 
are shown in Table 13.) lf the interaction effect of CED and 
lED is dropped, the estimated mean ages (or median) at child­
bearing are only slightly changed; the effect of lED on the 
standard deviations becomes negative for both ROI-I and CS-I 
data; the effect of CED on the standard deviations becomes 
negative for ROI-I data, but slightly U-shaped for CS-I data. 

Of course, the results are not quite reliable, as they 
ignore ommission-errors and as they rely on a very rough 
overall estimate of the tot al fertility. 
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TABLE A.I : 

Parameters 
mi' ffi 2 ••• (v>O) 

c.d.f. of W 
of parameter (s 1J- I (w) (w)= ••• 

("<.I _______ _ 

a -_._-_._-----_._-_._----_._--,~~-+------------------------- --------------

m=+oo 
I 

exponential beta-prime 
w 

( r (2m) 

)oo(r(m) 

exponential gamma 

exponential reciprocal 
gamma 

(a) Those are symmetrie around w=o 

(b) Or generalized logistic distribution 

(c) Or log-Wei bull distribution 

(d) A special Weibull distribution 

be ta-prime 
v 

----2 x (l+x) dx ) 
r(2m) m-I -2m j m=] 

-Q~~~~::_---------------- --------------
gamma 

dx 

reciprocal gamma 

j
v m m2 -I 

2 -m -I -m v 
___ x 2 e 2 dv 
r (m

2
) 

o 

1 
i 

= .604 

(e) No explicit formula 

logistic 

I+ew 

extreme value 
(minimum) (c) 

w -e 
e 

exponential chi-square 
with I degree of freedom 

{w I u 

)(lir(~»-l ei(u-e ) du 

Gompertz (f) 

-w 
-e e 

w -u 

\ 

-.604(u+e ) 
(.4983)e du 

-<00 

(f) Or extreme value (maximum) distribution 

(g) No explicit formula, but useful for the nuptiality model 

inverse c.d.f. 
of W 

<l>(1f)= ... , 

probit (1f) 

logit (l!) 

log(-log(l-1f» 

(e) 

-log(-log1f) 

log-normal 2 

~
v I _(l~gX) 

- x dx 
m 

log-logistic 

exponential (d) 

-v 
I-e 

chi-square with 1 
degree of freedom 

( I 
(T.r(!»)'l x-i e dx 

o 

log - Gompertz 

-I -v 
e 

v -I 

\ 

-1.604 - .604 x 
(.4983)x e dx 



TABLE A.2 SOME SPECIAL MODELS PROPORTIONAL HAZARDS MODELS AND (TRANSLATED-) ACCELERATED FAILURE TIME MODELS 

Parameters 

mI' mZ 

ml~I, m2=+oo 

u.s .. 

n.s. 

<l>(1T)~ .•• 

log(-logO-1T» 

n.s. 

n.s. 

H1Ts(t»~ •• •• 

n.s. (b) 

a 3 
(t+a 4) -I 

a
l
+a

2 
a

3 
(a 3 *0, * I) 

a 3 (t+a4) -I 
(a) If ~(1Ts(t»~aJ+a2 ' then we define 

a 3 
(b) n.s. = no specification required 

(c) n.C. = no condition 

Parameters Parameters (a) 

6(z) ,S(z) ,1/ (z) 

6(z)=1 e+(z) a 2 

e(z)= I 

-fHz) .a, =0 

'" 

n.c. (c) n.c. 

6(z)=1 
+ 

6 (z)=a
2 

.e(z) and îl(z)+ a l ·6(z) 

(d) ÀM(t;z) is the hazard function; À (t) is the hazard function of the standard population 
s 

Name of mode 1; 

description (d) 

Proportional hazards 
model (PHM) 
À~(t;z)=eS(z).À (t) 

s 

Accelerated failure 
time model (AFTM) 

t 
jTiK(t;Z)=1T (--) 

S k (z) 

I t 
),*(t;z)---- À (--) 

k (z) s k(z) 

Translated - Accelerated 

failure time model 

(TAFTM) : 

7I.*(t;z) 
k(z) 

SpeCial functions 

of parameters 

Relative hazard : 
eS(z) 

-I/a 
k (z)=6(z) 3 

k (z)~6(z)-1 

-!l(z)/az k(z)=e 

-I/a 
k(z)=S(z) 3 

-I/a
3 

(z) -1) 

-S(z)/a
2 k(z)=e 

-S(z)!a2 a
O

(z)=a 4.(e -I) 
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